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Abstract 1970

This two part paper investigates the prapagation of light in the visible

region through a crystalline medium.

In Part I, which is a slightly shortened version of the author's doctoral

thesis of 1912, the objective is to determine if the anisotropic arrangement

of ordinary (isotropic) dipoles at the nodal points of an orthorhombic lattice

would account for the existence of double refraction. The value of the com-
puted birefringence is found to be comparable to the observed value. Addi-

tionaily some features of the traditional "theory of dispersion" aro disclosed

and clarified. In the older theories the "Incident optical wave" plays a role

but it is shown that in a rnediuni which extends to infinity in all directions

no such vrave should be assumed: The refractivity is shown to arise as an

internal property of the medium.

In Part II, a crystalline medium is considered as filling a half-space

and having a plane boundary at z = 0. A plane optical wave is incident on

this medium. Because of the linearity of the equations it has to be super-

imposed on the field originating in the crystal. It is shown that this inci-

dent optical wave is actually prevented from entering the crystal because of

-jro the modification produced in the field of the crystal by the introduction of F
boundary. Boundary waves are found to exist on both sideg of the boundary.

The higher their order, the more rapidly they attenuate as a function of dis-
tance away from the boundary but the zero order waves are ordinary un-

dampted plane raves of vacuum velocity c. The fields outside and inside

-UiI!
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Abstract 1970

the mediun are connected by the Fresnel formulae: These follow from the 4

condition that th . optical field inside the medium and the oscillations

generated there form a setf-co-isis-ent system. *
Material Added 1970. Ths. conclusion that the incident optical field

cannot penetrate the crystal bc undary, together with a similar conclusion
in a paper by Oseen, is the basis of the Exvald-Oseen Extinction Theorem.

The same methods and fi;!iJ transformations developed in this two part
paper were applied in two later papers which were published as Parts 1H

and IV. These extend the treatment to the passage of X-rays through

crystals. "Postscript 1970" published here indicates the relationship of

these four parts and further developments of the s'bject as well as refer-

encing the papers notei above.

P.P. Ewald
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Preface

Several years ago wanting to know more about the trarZmission of

light in materials. I found that an explanation of the electromagnetic theory

of transmission of light in materials was contained in the book, "Principles

of Optics" by Born and Wolf. There I also found an explanation of t&,

Ewald-Oseen Extinction Theorem and reference to their original papers.

In order to have a better understanding of the principles, I attempted to

translate Ewald's paper which actually was publisher in twr. parts. I found

it to be not only basic to the Ewald-Oseen Extincto-i Theorem but basic

to an understanding of the principles of reflection and refraction of light

when considered on an atomic level. The basic nature of the paper is the

justification for this translation.

In printing this translation, the page format and the placement of head-

ings has followed standards establisbed for AFCRL reports. The numbered

equations of the original paper which started with one in each section, have

been numbered so that the mnbers are consecutive throughout the transla-

tion.

The illustrations have been reproduced photographically from those in

the original paper, and have also been numbered consecutively. Many of

the more complicated mathematical equatioas have been reproduced photo-

graphically to insure against error in transcription. There was consider-

able use of litalics" in the original paper, but sr.rcc the reproduction is

from typed copy and no italic characters were available, italicized
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statements and words are indicated by underlines. Quantities and equations

within th-: text h-'e not been italicized. However, no confusion should arise

since the letters in question - namely, a, b, c, 1, m, n, etc., were not

used with different meanings with normal and mathematical italic t3pe faces

in the- original paper.

r

L.M. Holi'ngSw'orth
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On the Foundations of Crystal Optics

Introduction to Part I (Dispersion Theory) and
Part If (Theory of Reflection and Refraction)

The problem of troviding a foundation of crystal optics by means of

the structure theory of crystals formed the subject of my thesis (Ewald,

1912(i)). The task then before me was to investigate whether dipoles,

which, since the work of Drude, had been assumed to account for the dis-

persion of light, would also account for double refraction when suitably

arranged in an anisotropic manner so as to serve as a model of a simple

orthorhombic crystal. If this were the case, one would furthermore have

to determine whether the magnitude of such double refracticn is of a com-

parable order to that observed in crystals of similar values of the axial

ratios. These questions arose, to be sure, before the experiments of Laue

and his co-workers on the interference of X-rays in crystals had shown

the correctness of the structure theory of crystals. It was, in fact, hoped

to obtain an argument in favor of this theory from the theory of dispersion.

iReceivee for publication 26 June 1970)

(1) Refer-ence added 1970: Ewald (1912) Dispersion und Doppelbreehung
von Elektronengittern (Kribtallen). .Thes, Univ. of Munich, 1912)
G&i.ngen, Dieterischsche Universitats - Buchdruckerei, p 45.I
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The result of the thesis is that without having to assume extreme ratios

of the axes, a lattice arrangement of dipoles can by itself give a strong

birefringence because of the inequality of the spacing of the dipoles in the

different directions. Furthermore, that the law connecting the index of

refraction to the direction of propagation of the wave (illustrated by the sur-

face of wave normals) is fulfilled. The assumed simple model of the crystal

is thus correct from the point of view of optics.

The numerically calculated birefringence of a lattice with the same

axial ratios as those of anhydrite (anhydrous calcium sulphate), led to dif-

ferent values of the birefringence than the observed ones. This was as-

cribed to the fact ihat the crystal consists not of one simple crystal lattice,

but of many simple interpenetrating lattices. This type of crystal structure

has been revealed by X-ray investigations and is now well established.

It is not yet possible today to decide whether the birefringence in siome

cases is determined entirely by the anisotropy of .positions, or whether in

-all cases there exists also an anisotropy of the bonding, that is, a different

restoring force in the directions of each of the three principal axes. At

present we do not know of a birefringent crystal of sufficiently simple

chemical nature for which the crystal structL.. a is known from X-ray dif-

fraction so that its positional birefringence can be calculated on the basis

o' t he methods used in my dissertation. Then by comparison with ex-

perience, one could evaluate the anisotropy of the bonds and thereby obtain

information about the internal forces acting in the crystal. Sulpbur might

be a suitable example as soon as its structure is entirely known. The

numerical calculations which are fully given in the thesis have been con-

siderably shortened in the present publication.

Ou'r main interest lay in the problem of the birei.-ngence: its ragni-

tude and the way it comes about. However it turned out that some novel

facets appeared from the point of view of the general theory of dispersion.

The precisely given positions of the dipoles made a more rigorous calcula-

tion possible than in past ti.-atments of the dispersion of isotropic bodies

which required averaging procedures. Small conceptuld differences here

IC
i
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forced attention upon ti .mselves. The first questions is. How, ex?.ctly,

are the outgoing fields of the individual dipoles to be summed in the crystal

which we think of as being of infinite size ? This is a question of conver-

gence which however remains meaningful also for the finite crystal.

A second new aspect, at least with respect to the Planck and Lorentz

theory, was the omission of the "incident wave". Planck and Lorentz let

the single dipole be excited by an electrical force, which consists of two

parts, the 'external one" ((g) and a second contribution which comes from

the other dipoles of the body. Thf, first part, k , found no place In the

theory of the infinite crystal. The mutual interactions alone maintained

the dipole vibrations, so that the complete state of oscillation of the crystal

had to be looked upon as some type of free-vibration, not requiring an

external forcing field. The idealization of the problem by considering a

crystal with no boundary was found to contair justification for the omission

of the exterior exciting field (g . In a finite crystal, its boundary should

play the role of deleting the incident wave k, for the entire interior of the

crystal. Only in this way was it possible to understand that in an unbounded

crystal no exterior excitation can be noticed.

In this asse!tion lies the admission that for a complete understanding

of dispersion theory the treatment of reflection and refraction is absolutely

essential. This supplementary theory of the events in the boundary of th.,.

body will be given in the second part of this paper, and that part is new
and orlbnal. It treats the following problem:

Given a bounded crystal - which fills the entire upper half space above

the boundary surface z = 0; from below a plane wave %, is incident on the

boundary at an arbitrary angle. Find the mode of vibration of the dipoles,

and whether this leads to the formation of refracted and reflected waves -

and implicitly to the Fresnel formulas. Finally, can the antirtpated in-

fluence of the boundary be shown?

(1) Note added on pU1ey p!.of. Mr. C. W. Oseen recently, in a dif-
ferent context has also called attention to the necessity to treat dispersion
theory in the sense discussed above. Oseen, :. W. (1915) E.ysilI.
Zeitschr. 16:401.
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This problem of the bounded crystal appears at first sight to be con-

siderably more difficult than that of the unbounded crystal. In actual fact,

however, the vibrational mode as found in the thesis which resembles the

frce vibrations of a mechanical system is a stepping stone for dea-ing with

the bounded crystal. Just because the surface layer screens the inside of

the crystal from the invasion of the external wave, a mode of oscilte.tion

inside the crystal becomes possible as if there were neither a boundary nor

an incident wave. Since this mode of vibration is well known to us for the

unbounde:d crystal, it requires little effort to reduce the case of the

bounded crysta.' to the case of the unbounded crystal.

Tho second part of this paper may be considered an extensiol or con-

tinuation of the problem treated in the thesis and in particular as a proof

of a statement made there. Furthermore, a particular point that was not

treated before will be discussed. This is the transition from the pre,- ae

microscopic field that exists between the dipoles, to the macrzscopic

average field that is used in the phenomenological theory for the treatment

of reflection and refraction and whose amplitudes are determined by the

Fresnel formulas. These are concerned with the comparison of the field

stre-gths outside and inside of the crystal. One has therefore to watch

closely the relations between the calculated microscopic field in free space

between the dipoies of the body and the Maxwellian field quantities and

T inside the body. For the dispersion problem proper, we are only in-

terested in establishing the phase velocities with which the quantities ( ,

Z and D propagate. For this purpose it. is not necessary to distinguish

between (F and ), and according to the thesis, the results can be obtained

solely from the vector potential without even specifying the field Strengths.

This discussion, however becomes necessary in connection with the Fresnel

formulas. Section 5, Part II, really belongs just as much to Part I (dis-

persion) as to the theory of refraction, but was omitted from Part I in

order not to interrupt the traia of thought for the treatment of dispersion

theory.
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Finally, let it be mentioned that the behavior of crystals for very short

waves (x-rays), is contained in the rigorous calculations. See Section 7.

It is of particular interest to follow the transition from the caje of x-rays

with a multiplicity of interference rays to the case of optical rays with

only three waves (the incident, the refracted, and the reflected waves).

M
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Part I. Dispersion Theory*

I. STATE.IENT OF PROBLEM

(1) Given a simple orthorbombic 1 ice with lattice points at cartesian

coordinates

X = 2al; Y =2b; Z= 2cn
(L, i, n integers from -co to + cc)

Electrons are bound to these lattice points with quasi-ela.-c and isotropic

forces. The last statement means that the restoring force between the

electron and the lattice point d'pendB only on the magnitude but not on the

direction of the displacement. With what velocity and what attenuation can

one have a plane wave of a givren frequency propagate in this medium ?

(2) We begin with the rem~uder that for the purpose of calculating

optical fields the oscillating electrons of charge -e can be replaced by

oscillating dipoles. We imagine fixed charges +e and -e to be placed at

the lattice points. Then +e together with the displaced electron form the

* Shortened thesis Munich 1912. I wish to not fail to express try
sincere thanks in this price to professor Sommerfeld for his suggestions
and support in this work.



dipole, while the remaining charges -e at the lattice points produce an

electrostatic field in which we are not interest.d.

In the equation of a plane wave:

+L

E is the amplitude, n the frequency, and s is the coordinate measured in

the direction of the wave nolwal. The sought for values of phase velocity

and attenuation are contained in the constant k whose real part k, gives the

phase velocity q = n/k 1 , while the imaginary part k2 produces the attenua-

tion.

One now makes the assumption that the planes perpendicular to the

planes s = constant are planes of equal dipole phase. The phase velocity q

with which the phase propagates in the lattice is at first not fixed. One now

shows that the superposition of the outgoing individual fields of the dipoles

produces a (continuous) field strength which has likewise the form of a

plane wave; this being a direct consequence of the assumption made for the

(discrete) dipole oscillations: furthermore, that the frequency and attenua-

tion of both waves - of the field and of the dipole excitation - are identical.

In order to determine these quantities which are both contained In the com-

plex constant k, we have to insure the dynamical possibility or consistency

of the origina. assumption. This requires that each dipole Is excited into

oscillation by the field impinging on it. This condition can be tulled for

any frequency by proper choice of the arbitrary constant k and this yields

the relatioaship between frequency and phase velocity, namely the disper-

sion formula.

2. METHOD OF CALCULATION

Let XYZ be the coordinates of a dipole and xyz the coordinates of a

field point; and further let

S= X cos (, ) + Ycos (Sy) +Zcos (a,z)

__________



be the alstance of a dipole from the plane of equial dipole phase which

contains the origin: let q Le the (undeterm~ined) dipole pha.se velocity, n

the frequency in the time factor e-  so that

A e

is the phase factor propagating in tie direction -S of the dipole excitation.

The individual field emitted by a dipole with the charge =e is then

characterized by the Hertz vector

lnbihR fX-422 2 1/2,
inwhichR= [(X-x) 2 +(Y-y) +(Z-z) 1/, signifies the distance from

dipole to field point. The term R/c in the exponent indicates that the field

itself propagates toward the field point with the same velocity c as in free

space.

Since all dipoles have the factor eint in common, we omit it and in-

troduce

and then write for the significant part of the Hertz vector

and recall that in a material with dielectric conztant 1, the electric field

strength ( and the magnetic field strength Vi can be obtained through the
_, operations

*The original reads 'xIre ether" but free space hRst been substituted
as the modern equivalent expression.

4
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=curl curl$ ,Icr~

-~grad div$ - d (4)

According to the equation fulfilled by $, namely

401 ~$ 0 (5)

$ may be re c by - ka

The total field is then obtained from the potantial

" /k. -ikS

I3=e. ea (6)

where the sum extends over all the dipoles of the lattice. This total

potential becomes infinite as 1/R near each dipole and thus in solid ma-

terials it is spatially an extremely rapidly clanging field since in solid

bodies many hmndreds of molecules occur within a wavelength of light. For

this abruptly ebangin wave field, the -- rvable optical field represents
an overall ground swell which can be obtined by averaging.

The average optical field is by no means decisive for the oscillations

of the id'7idual dipoles. These, rather, are caused by the excitation field

that we write

eaI = Z$ (7)

where the accent indicates that the sum shall be taken over all the excited

dipoles with the exception of the one under vnslderation. The excitation

field is accordingly equal to the total field reduced by the contribution

*Note: The operator A is now more often written V2 and this change
could bave been made in translation, but it was decided to keep the original
form.
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coming from the test dipole. The equation for the oscillation then is given

[fr- Eq. (4)]

0 +0 + fp
=escurl curl (a 7'- ). ()

Here

is the elongation, m is the mass, e is the charge, f is the quasi-lastic

force, g the coefficient -3f friction. By introducing the proper frequency

of the dipole

0no- f

the equation becomes

-+ .2 i) !Icurl curia H'.

To shorten this we set

-)9)

and replace curl curl with its equivalent: (grad div -... Thus we have

to fulfill

a (D + AfI) = grad div a 17' (10)

or in components (the indices on the potential IlP indicate differentiation

while those on the amplitude a signify component formation):

ME
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-4IT- T1-s-at 17'= -= ==.

~i

- a, 17".0 + /.i. + A - /, - ,: -0
- as 17", - a, 1 ITS + a. (9 + j IT - IT".: ---- 0aIi~(l~a) f

The condition for simultaneous fufilment of these three homogeneous equa-

tions is:

D + J 17'"- IT", - 17'= l,-/2"4, - + L -f ' - ' - T;. ! 5

-7 L) +. " -17' i0.

17 +(A7 ' -111)

The II'... depend on the constant k which determires the dipole phase

and this is the same as that which determines the projpgation of the optica

field. Thus thri determinant Eq. (11) expresses the relationship between

the index of refraction

S-e (12)g q

and the quantity . which contains the electron constants and the frequency

of the optical wave. Law of dispersicii.)

We obtain the principal indices of refraction of the orthorhombie lat-

tice by assuming the direction of the dipole oscillation to be alc-ag one of

the three axes; for each of these axc-s this can be done with two different

directions of propagation of the optical wave. We thus obtain in the fir-t

!astnca s pr-r-iel i-ndies of refraction, which depend on the %.ondition

of polarization and on the direction s of the wave normal:

Oscillation a = a= Propagation along z : v,=
a -" o, zy: k., .-

al- aI, x: k. , Y. S

a= k.
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Herein lies a departure of the lattice from the actual ciryst'.l in which only

FRI three principal indices of refraction are observed, and we will now con-

OF sider the origin of the sLx indices in a more direct way.

Let the dipole ampli rude be in the direction of the x-axis. This leaves

us tvo different ways to dispose of the plane of constant dipole phase (see

Figure 1):

__(1) The phase plane is the xv-plane (propagation along z).

(2) The phase plane is the xz-plane (propagation along 3). Orn account

of the non-equivalence of the v- and z- directions in an orthorhombic lattice,

W these two cases lead to two difftrent exciting fields and there are in general

It is clear, however, without further calculation that the difference

between the two indices of refraction vi_ and :x is very slight. For it

arises from the fact that a phase difference exists between the test dipole

and its neighbors - in one case the neighbor in the z-direction, !n the other

case those along y. The phase difference between adjacent dipoles being

very small anyway, because of the large wavelength of the optical field, any

effect produced by the inequali4, of the two phase differences will be ex-

tremely small.

__It will therefore be sufficient henceforth to distinguish only the three

principal refracive indices v, rv, vz which refer to the directions of

oscillation a., a , a, respectively. Their differences determine the bire-

fringence. The differences between them are considerably greater than

those caused by the directions of wave Dpopagation. because they are nearly

2* " IL,

z I I I

Figure 1

ME
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independent of the wavelength. Figure la shows the dipoies with their os-

cillations in the x-direct.on and Figure lb the same lattice with the oscil-

lations in the y-direction. For an understanding of the physical significance

of the difference between v and vxz (optical rotation power), see the con-

cluding portion of Section 4.

When computing the principal indices of xzfraction (propagation along

one axis and oscillation along another axis), the three coordinate planes

of the lattke remain planes of symmetry and for this reason at the lattice

points the differential quotients 1I' = 11' = 0; and thus the deter---- _: ~~xy xx yz 0 n hstedtr

minant reduces to the diagonal terms and one obtains from Eq. (10a) the

equation for the determination of v

D+ (J4R' - 7J';), = 0. (13)

The 'rdex z is to remind one that the specialized formulas for propagation

along z must be used in order to find vxz. In this equation the second

derivatives of the potential - as the approximati3ns show - contain only the

ratio k/k 0 = v, bnt not the frequency n which appears only in the electron

constant 2.

If one eliminates the electron constant , from Eq. (13) and the similar

equation for Vyz

+ (AH' - HJY). = 0 (13a)

on'- otains an implicit relationship between the two principal indices of

rr ctionv and , which does not depend on the frequency n; nor does

it depend on the number and characteristic constants of the dipoles; this

relationship •

(,AN7 - 17= (,A17 - 17v).(4)
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depends solely on the structure. In the case of an orthorhombic lattice

this equation leads to a relationship previously found by T. H. Havelock

(see Section 4):
1 1

Const. D,

whose non-dependence on the wavelength Havelock found to be confirmed

in some crystals. The calculation of 1'xx and I1' enables us to determine
xx yy

the magnitude of the measure D of the structural birefringence for a

given axial ratio.

-3. SOME GENERAL REMARKS ON PROCEDURE

(1) The summation of the individual potentials

a(keR - kS)-
a (15)

which is required in the previous section for the calculation of the optical

field as well as of the 'exciting field," has no definite meaning for real

values k0 = n/c and k = n/q. Because of the oscillating factors in the

numerator, the decrease of the partial terms as I/R is just about sufficient

to make possible a finite value of the sum; however, this value is indefinite

and dependent upon the manner of the execution of the summation because

the convergence of the series is 'conditional". To arrive at an unequivocal

result, the observations of the previous sections have to be supplemented

by summat on instructions which have to be derived front the nature of the

physical problems.

To start with, one is relieved of all diffiulties of convergence by con-

sidering a finite piece of crystal which consists of a large number of di-

poles N. When a light wave falls onto this crystal, the dipoles begin to

oscillate and creata together with the incoming wave (_ an electric field
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in the body. This, in turn, determines the manner of the ose-llations, the

propagation velocity, etc., as shown in the preceditg sections.

In the finite body, this field depende essentially on the boundaries. If I
the surface on which the incidence occurs is plane, the wave is refracted.

f it is undulating, diffraction spectra of different orderE develop and all of

the d iffractaon phenomena at the boundaries of the body are within the solu-

tion of this problem, The dependence on the surface eudends throughout the

entire inside of the body.

Obviously, the meaning of the prblem of dispe.sion is more restricted

than the proposed task: it is enough to determine the propagation veloity of

a wave, that is, a material constant which is independent. of outside condl-

tions (uoundaries). The very existence of this problem shws that the

essential process of wave propagation at a point cf the body is caused by

the environment of this point. Neither the boundaries nor the outer wave

can influence this process - or else it would have to vary in the body

fr n place to place. The progress of a wave nside of a body is a dynami-

cally closed process which inherently has the capacity that when excited in

one part of the body, it can move on to other planes without the help of ex-

tril, forces. The variety of the diffracticn phenomena of a bounded body

results because the boundary initlates many -ypes of oscillations in the

body. These then continue to develop in a "aynamlcally closect' manner.
If our aim is, in te pure theory of dispersion, to find the 'dynamically

closed" state of oscillation, then we have to eltminate the Influence of the

boundary. We must, because a material constant is involved, consider

only the influence of the environment at the place of the p;opegation. That

the environment should extend everywhere over many wavelengths does not

enter into he question of convergence. The simplest way to proceed is to

return to the infinte crystal, but to introduce instead of the everywhere

equally strong dipole amplitude a a gradually diminishing amplitude at

distances far from the test point

aa--4



if x<IJ/1A. this produces no change withi-n many wavelengths from the

test point. However, it assures the determinancy of the problem and the

unconditional convergence of the sum of the individual potentials. This

sum may now be written

and is formally identical with the old sum except for the fact that

ko k+ ix

has the imaginary part x

in the case of an absorbing crystal, for which one would have to as-

sume an amplitude growing exponentially in the direction opposite to that

of propagat;n (k = k1 + ikY) definite values of the sums can evidently only

be 6btained by assuming a value of x larger than k2, For x = k would

just compensate for the increase of dipole amplitude and reduce the sums

to the same indefiniteness as in the ncn-absorblng crystal and x = 0.

In the following we re-ntroduce ii) place of k0 explicitly

I0
k0 =kol +i k0 j.,

whereby k02(=x) > k2 . The result of the summation with this complex k0,

is one of the possible sum values with real k0 . By exec-ding the summation

with a complex value and reducing its imaginary part to zero in the sum, a

value of the sum is obtained which is free of any influence of the boundary.

(2) From the last statements, it should Dot be surprising that in the

foregoing paragraphs no mention was maee of any wave U, incident from

the outside. The force which stands on the righthaid side of the equation

fo? the oscillations contains only fields radiate.i by the other dipoles of the

body, not as with Planck and H.A. Lorentz, a term co,_-.espondng to an

I:. ......... .
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Incident wave. Such a term would contradict the interpretation of the wave

propagation as a "dynamically self-contained' phenomenon. The impos-

sibility of the existence of the primary wave k inside the body is evident

from the result of the summation of the individual fields: the assumed

dipole oscillations produce a field, which by itself has the form of a plane

wave travelling with velocity q. If this field were to be superimposed on

the primary field k0 which has another direction and travels with another

velocity c, these fields would never combine within the body to form a

single plane wave.

According to the point of view in subparagraph (1), it is clear that the

absence of %o must be due to an effect of the boundary. The plane boundary

of a body fulfills the functions of

a. compensating the incident wave everywhere in the interior of the

body;

b. initiating the '11ynamically self-contained" mode '- propagation of

the refracted wave;

c. producing the reflected wave in outer space.

A forceful proof for the required effect of the boundary may be obtained

from considering a ray of limited cross section falling under an angle on a
plane boundary (Figure 2). But for the fact that the exposed part of the

boundary produces a plane wave of equal direction and phase velocity, but

opposite phase, as the incident wave, there would have to exist an optical

field also in the region between the dashed lines of the figure.

Figure 2



4. RELATIONSHIP TO OTHER TIIEORIES

This work comes closest to the dispersion theory of Lorentz and

Planck. The main difference is that in their treatment of the isotropic

body, average values are used whereas in this paper strict consideration

of the geometric location of the dipoles is employed.

One further difference of the basic assumptions has alreaay been men-

tioned above; namely, that we omit the incident wave . It remains to

say, however, that the results of the above mentioned theories are con-

firmed in this paper when the results are specialized for a cubic crystal.

In computing the birefringence, this work cxceeds the aims c i the above

mentioned theories and is closely connected with a group of papers by

Lord rlayleigh 1P, T. Havelock( 2) , and N. Kasterin(3) . These papers start

out from Rayleigh's investigation of the properties of a medium in which

obstacles in the form of small spheres of different dielectric constant are

imbedded in a lattice arrangements. Only the static problem oi finding the

potential distribution is treated. On this basis Havelock uses the dielectric

constant for the composite medium and assumes that it varies with wave-

length in accordance with Cauchy's formula. This gives him a dispersion

formula.

Kasterin, however, has succeeded with a method similar to those

used by Rayleigh to find a solution for the wave equation -A u + ku = 0

which fulfills the boundary Londition on the surfaces of the spheres and

which represents plane waves. It is a pity that this excellent piece of work

has only been applied to acoustics problems.

The connection between Kasterin's work and the present study is based

upon the remark-0), that the way a plane wave is affected by a small

(1) Lord Rayleigh (1892) Phil. Mag. 3.
(2) Havelock, T. H. (1906) Proc. Roy. Soc. London 77:170.

(3) N. Kasterin, Lorentz-Jubelband, or Versl. Acad. Wetensch.
Amsterdam 460:1897-1898.

(4) See P. Debye, Der Lichtdruck auf Kugeln, diss. p. 50.
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spherical obstacle can be replaced in the first approximation by super-

position of a dipole spherical wave issuing from the obstacle.

1z a second paper, Havelock(1 ) has approached birefringence with an
idea occurring in Planck's theory, namely that in isotropic bodies the•

exist 3 around each test dipole a spherical cavity such that the molecules

lying within it do not on the average excite the test dipole in the middie of

the cavity. According to Havelock, there exists in a crystal an ellipsoid

of similar properties. The birefringence can then be expressed by its

eccentricity, but it is not connected to measurable quantities. Havelock

finds in his work, the relationship D, (Section 2), between the principal

refractive indices -Thich should be independent of the wavelength.

Langevin( 2 ) comes to the same result by assuming that each molecule

is anisotropic. Thus, if it is throught of as being isolated in space, it is

assumed to have three different &gen-frequencies. We shall show in

Section 9 that the qualitative result of the assumption of an anisotropic

molecule must be the same as that resulting from the assumption of a lat-

tice structure.

NOTE: Since the first publication of this paper (thesis), the same problem
has also been treated by Max Born in his 'Mynamik der Kristallgitter"
(Teubner, 1915). Born's mathematical method follows closely the presen-
tation which Hlubert gave of the same subject in his lectures on optics in
1913. In these a consistent mathematical development of potentials ac-
cording to powers of the small quantities kg. k.a, P. . etc., is carried out.
Born has treuted the problem in a very general form, namely for non-
orthogonbl latices containing different sorts of electrons or ions. He also
assumes that the charges are not bound elastically to fixed lattice points,
but only to one another, and that therefore mechanical oscillations occur
simultaneously with electrical ones. The case treated in my thesis can be
derived from Born's equations by assuming an orthorhombic lattice in
which all simple lattices from which it is built have infinite mass except
one. The one remaining type of charge oscillates then as though it were
bound to fixed lattice points.

(1) Havelock, T. (1907) Proc. Roy. Soc. London 80:28.

(2) Langevin, P. (1910) Sur 1 3s birfringences glectrique et
magnetique, Le Radima 7.
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The coicluslons which Born him-af has drawn from his presentation ex-
ceed considerably my work --n one point; namely in the expianation of the

A optical rotation. If a beam propagates in the direction of the optical axis,

then the polarization direction and the velocity are in the first approxima-
tion independent of each other. Only in second order approximation -

Iwhich wo-ld yield in our presentation che difference between "-y and IIXZ -

can one find the anticipated re.ationship which can, as is well known, be
expressed *)us: Two circular p-olarized beams of opposit. sense propagate
with different velocities.

Born does not furnish numerical calculations which would show what part
of the bireringence results from the influence of the lattice arrangement
and what part from the bonding.

For the present paper, I have taken from Hilberts lectures the idea of the
consistent development in series of ko etc., at that point where agreement
of the dispersion formula with the Lorentz-Planck dispersion formula is

_E to be shown in the special case of a cubic lattice. (Section 9).
:-L

C 5. WATHENATICAL PREPARATIONS

To accomplish the summation of the individual potentials, two

representations of

I eikR

prove to be particularly suitable, since they do not contain the irratiora
2 2~1/2value R = (x + y + z )l. but the first or second powers of the coordi-

nates. We speak of one of these = the single, of the ather as the triple

5.1 The Single Inteval

Let the value lie in the complex plane within the angle .9 to the

real axis.

Then

0 d(

fe(1&)

DO

ff
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converge when z is so behaved that for its small values A ( < 0, and

for iarge values Re (z) > 0 . This is, for example, the case when E runs

oul from the origin within the sector - 7/4 + 0 and - z/4 and continues in a

st-aight line to hifinity.

The value of the integr-al may easily be determined (see Riemann-

Weber, d. part. Dgl. d. math. Physik , 5th Edition, p. 2):

ft - de = -.- e+2i. (1?)

By ptting e = R- 77, the path of integrarion remains essentially unchanged

and we have

Finally by writing (I/;2k R inse of k, we obtain the sie inegral

-O..- - r. + d (18)

whose path can be deformed so as to coincide with the positive real axis,

except near the origin, where it has tolie within the ange 6. (See Figure 3,.

&-Plane

0 8

Figure 3
EI

I

I
.: |
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5.2 The Triple Integri

In order to obtain a representation in which the exponent of e is a
linear function of x, y, z, the simplest wuay is to transform the single

Iintegral representation Eq. (19) as follows:

We have

+ rf et dxme-"fe d!. 2e'. i (9

We substitute in Eq. (1) in place of e - -' the integral over X standing
on the left hand side of this equation and simflarly for c - and e -. Oc

analogous integrals over the variables y and v. Thus we obtain the

quadruple integral:

ffifJ ea ,

The order of intgraions may be chaged and the integratin over f

- -

(21)

This leaves the triple integral standing

jKifffeiz I~ - (22

-which integral las the desired very suitable form for summation.

E•
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it is seen that the substitution - .. in place of + X, .. chnges nothing

but the sign of the exponent. Furtbermore, if R is the distance of the point

xyz from the point XYZ, rather than from the origin, the generalized in-

tegral is valid

1 fy ±a dldud.
e-- l -- . i- i-' _ (23)

Ffnally it should be noted that it is possible to shift the integration path

from -he real axes provided that the condition

k2 _ 12 _'UZ _ r2 =0

is avoided. In pa-ticular, if the .nositiwe ihaginary part of k is nonzero,

identical integration paths a short distance above the real axis may be em-

ployed for the three variables. (That is, between the axis and the point k.

6. THE TPTAL POTENTIAL A.D THE OPTICAL FIELD

In order to obtain the total potential of the orthohomblc point lattice,

we first rme use of the triple integral [Section 5, Eq. (23)] and s=

the individl potentials

ei()E-kS) #- # * 'i.(-s)+t,(Y-w±i-(Z-:) (24)
- B 2  JJJ dldpdv

The coorditates of the lattice points are:

X= 2a, Y=2bm, Z=2cs,

where 1, m, n take on all integral positive and negative values. (a, b, c)

are the half distances between neighborinr points on the crystal axes and,
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F !at the same time, the spacings of adjacent planes of symmetry in the

crystal. k0 is the propagatlon constant of the individual spherical wave,

k that of the dipole phase. We write

kS = k (X cos(S, z) + Y cos(S, y) + Z cos(S, z))
=-aX + #Y + Z; (25)

whereby

a + + Y$ = kt-  (25a)

The total potential then is

i H3---Sal - z± - 2 = ± a + 2 t ' r  (26)

e td!dpd
2-2IS - P'- -

We carry out the summation under the integal. The triple sum is then the

product of three LiUnear geometric series of which the first is

:I

I --

ICovergence of this sum for positive and negative values of I can be

achieved tlanks to the uncertainty of the sign of X, provided that the im-

agnary part 02 is greater than k2 (see Section 3). For if this is so, we

can let X rum oa line parallel to the real axis and above a, similary for

I and v with imaginmry parts greater than those of 3 and 7 respectively.

Thus + X - a has a positive Imaginary part which insures that the sum con-

verges for positive values of 1. The sum over negative I converges when

we reverse the sign of X.

One finds the proof in the thesis note 1.
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The summation over I therefore ytelJs

-s00
2ial(l - + c --26i(1+-)( i - )(

00 ++

+2 olal - 2 ema

.-in( + 2a)-* 2 1,* amj
ec.2al -ooSaa

Appropriately performing the summations over m an( n, the Totvl Potential

thus is

__.__ __,_- on _7 49 - as - P'- ,2

where the integration paths for () Av) are lines parallel to the real axes,

ant lying above (ag'y), respectively. (Path 1, Figure 4).

X-Plane

0O , 0%. 0

u '-.1)

Fixure 4
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Let us remove a part of the integrand. We write in the X-integral

&aA(x+ 2a)- o2e sin Az

coagal - cosg2a

sin Azeollal + ema singsl - 6 la Az
emg2al - co 2aa

€ox csin e2a - co a a

Here the first term, sin Xx, has lost the denominator and with it a pole of

the integrand. For this part of the integral we can then shift the path of X
2 vto the real axis. Because sin Xx is an odd function and k6 -X-- 2 Is

an even function of X, the integral is zero. The same is true for the pro-

posed integrations over pi and v. The integral then is:

ii fffeoa sin2a1-isin Ain 2 aa

d dpd, (29)

It is easy to convert this integral into a sum built up from the residues

at the poles of the Integration. The poles for the X-integration are.given

by

cos 2a cos 2aa, ,

where I is a positive or negative Integer. In the X-plane the poles lie on
the two parallels to the real axis which go through the point ±a . (Figure 4).

The integrand is an odd function of ). Then by the substitution
- the horizontal original path (1) is replaced by path (2) which lies

symmetrically tc (1) below the lower row of poles and is traversed from

+oo to -co. Adding a factor 1/2 for integration in each variable, we may

use the path (1) + (2), thus obtaining

I
I2
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zo zsn2 A-IDI i 2a*16n -- i c-T os 2 aA - cos Saoa ""

(11 + '2 d d dv
... kost - If - 2--J:

The path (1) + (2) is a path closed at infinity which can be contracted to

circulation of the row of poles, the circulation occurring in the negative

sense.

The residue at one cf the poles X0 = (I 7± aa/a is obtained by develop-

ment of the integrand denominator in terms of (X -

cos4z c= 2a4 - i sin 4z sin 2 ra
- 2asin2a a(-Q +...

-1a sin4a\
o i x- iin2a . I+.

_- 2~ 2. a ) +~a

- IA . cosloz-isinAsx. *sin ita a I
±7 ± 05a

1 -l -- "

uff t-s" -e 4-"...,

where the uppe., signs refer to th. poles of the upper set and convers -ly.

The sum of all residues which result from the integration over X is

2 1i I I caa- 1 . , (In++ + + a- n
-" a -O- -e

or since ihe second sum is identical with the first, (differing only by

having -1 in place of I for the summation Index):

+

---

I
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By the same procedure regarding the other integratiorns we obtain the total

potential:

-- e.. -i ' e+ea r .*a+' *.an+c
"~4 -- "-- r- 'a - "--

-- -- ',t+a (g (30)
I "- ' "/'7--)2 ,t + Cr)

This series which is equivalent to the gls Eqs. (28) and (29) is a

precise description of the electromagnetic vector potential whizh resalts

from the supeerposition of th- spherical -ves.

By placing the factor

c -((z+$vy+ya) -. •-i

before the summation sign, the potential bas the form

i- -i". ,(30a)
. labc

where the remaining sum Z is a periodic function (Fourier series) with

the development range + a, ± b, ± c. The factor e differs from the

factor for the dipole phase only therein, that in place of the discontinuous

variable S (the coordinate of a dipole) the continuous coordinate s is sub-

stituted.

In order to obtain a clear picture of the potential given by Eq. (30a),

one must keep in mind, that the development range of the periodic hunction

is extremely small in comparison with the disance that the factor e

requires for a full period. The distanc between the atoms in the body are
-8I of the order of 10 cm while a light wave, even in strongly refractive

wnateral, is not smaller than 10 cm. There are thus 100 - 1000 atoms

to a light wave length.
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The factor - k thus hardly changes within an elementary paralle-

piped. In order to visualize Eq. (30a) we have primarily to think of a

periodic fumction of very complicated character repeating around each atom.

After that, proceeding from atom to atom, we have to modify the ampli-

tude of the function according to the modulation given by the slowly changing

factor.

For the optical wave, roughness and spikes of the microscopic field

are immaterial and the periodic function, in its repetition from atom to

atom, contributes only by its average value. This is given by the constant

term 000 of the Fourier series, namely

1

Therefore the potential of the optical field is:

2_ _e
-  (31)

2.6.

completed by the time factor e it describes a plane wave in the direc-

tion -s whose exponent contains k as the wave constant and not k0 as do the

ndividual spherical waves. Accordingly, the optical potential satisfies

the wave equation

Aff + k1ff - 0.

The wave constant k, which was originally assumed, and the ratio

k
Vi

have to be determined from the "1dynamic equilibrium condition" (Eq. 10,

Section 2).

!
I
I
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The factor (k0
2 - k) - i deterraines the amplitude a of the oscillating

uelectrons for a given intensity of the observed optical wave. For small

values of (k0 - k), namely when the index of refraction is not far from one,

the amplitudes are particularly small. This is fundamentally the reverse

of the statement, that slightly resonating e'lectrons have only a small in-

fluence on the index of refraction.

SECOND SUMMATION: EXCITATION FIELD

The form of the total potential as derived in the previous paragraphs,

shows clearly the origin of the optical field. In particular, it was easy toikssee that the total potential has the same phase e at all lattice points as

that of the dipoles. This means that in the calculation of dipole oscillation

(Eq. 10, Section 2) we may restrict ourselves to the dipole at the origin.

For it we have to find the excitation potential, or rather its second deriva-i
tive, which by means of the determinant (Eq. 11, Section 2), determines

the phase constant k.

It is not possible to separate the effect of the test dipole 00 from the

sum Eq. (30) of the previous paragraph. This is due to the fact that the

sum becomes infinite for x = y = z = 0 by non-uniform convergence. The

contribution which has to be subtracted, R eR ' diverges in an entirely

different manner. It is not possible to combine both terms before they

become infinite. Furthermore, the form in which H1 appears does not allow

doue differentiation.

It is very fortunate, especially with regard to the numerical calcula-

tions, that the smumation also may be performed wit!: the help of the single

integral for the individual potential [Eq. f18), Section 5]. One obtains a

single integral over a product of theta functions and exponentil functions

__ and one can effectively perform the subtraction of the divergent terms fro 1

the integrand so that in this calculation of the excitation potential, no in-

definite term cc - c occurs. This is fundamentally the merit of the

I
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0 -transformation theorem, by virtue of which each 0 -function admits of

two entirely different developments. In one development, each term can be

interpreted by us as the effect of a dipole, and therefore the contribution of

the test dipole to the cotal potential can be recognized and subtracted. In

the other development, the contributions cf the individual dipoles are com-

pletely mixed up and each term of the theta-expansion matches one of the

terms from which in the previous sections we have built up the total poten-

tial in the form of the triple sum. By suitable use of both descriptions, it

is not difficult to subtract the contribution of the test dipole, while retaining

the essential parts of the fields of the other dipoles.

We proceed from the integral Eq. (18), Section 5:

-L f dd ; (32)

in which we substitute a dimensionless variable e by setting

2d . 2 ek dD& _3__+_1_+,-- X, - -, 7
=-,4 d1 (33)

where d is a length of the order of magnitude of a, b, c which we will

cloose later as the geometric mean of the lengths of these sides. Then

-- # . - T~- -. F + (r-i)" + CS-SPI + -

- .(34)
i0)

The condition of Section 5, regarding the direction undaar which the path of

integration has to leave the origin is not affected by this transformation.

s I
I



We multiply by the dipole phase factor and sum: This gives for the total

potential

- F'2 -:-+(2va -yP+.72ci- Oil - 2 :sa*-2ibpn_2ic. %.+

The part of the exponent which is dependeiit on the summaiion index I is:

= al

The simplest theta function (which is referred to also as i or )
admits of the following series expansion:

&(V ir) =K-.e'?2Z (36)

By interchanging the sequenice cf summation and integration, we have there-

- I

for in Eq. (35) before us

I -*z W '-d .' '  .

:aa

and the total potential is

+; e
- .d de.-0 - , -- - - ~ - -
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If we desire to drop the dipole 000 from t smma.lon, we omit the 000
term and we obtai the ex*citation _Dotential:

IT-- . O.@--l ; " .(38)

In order to perform the iutegr..tion, we utilize the series expansion o

t . The original series Zq. i36) converges quickly w)tn r is large; we

obtain a usefi. expansion for s e through the # -tr-nsformation

for ula~ "

r!

2.1 ( (39

By means of the 'transformed' and the "orIginal" series, the following in-

tegrals for fl are produced:

lt at" J2 d
-, .- ., f(-±+ )'.I-L 2'.+.+f_~ +,

The integrands are identicall equal for each value of z. We wil abbreviate

tle exponents in the first and secod integral as I ari II respectively. Then

tze derivatives are:

(1) See for exampe, A. Krazzer, Lehbucb der
p. 96, Teubner.

I
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R U. and = ff

d d &1E-2 (41)

dfe a +- . -,.,-,

abeJ a~ x I :V~
- " (42)

We must now subtract from 11 Mc the second derivative with resDect to x of

the individal potential of the test dipole at the origin. For this purpose,
F .we divide the integration for 1f in two Darts: from 0 to E nd froI E

to x . The crossover place E remains at present indeterminate. On the

t first part of the path we use the series with the exponent I, on the second,

the series with I. The quntity to be subt is [see Eq. (34),this

Section

E .

SM4d ) de (43)

.Again, we divide this integral in two parts at the crossover point E , and

find tlmh the integral from E to c is identical with the term 000 of the
seco--A half of II xx. The subtracLon can therefore be achieved by putting

an accent on the sum sign in order to indute that the te--m 000 bas to be

omitted. If we simultaneously take the value at x Y z =P =0 we obtain

As published, due to ty p graphical error, the ast po-wer within the
brssrkets %w given as S.
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JT8  .- '-i
Efl"' - -yf(A,+ '.. daf- rd

P I "  d -_abe - - I + q e- a + x - -- f d, a
a, (44)

+ , -

wereoi the reoints the r lin t he: uprlmtEadoels

rl + ' -.

,, - .1, +...- 2 i" +---+-a

in H the general su term may eaily te intertead when one takes into

con 6Fo r a t = 0 because ei the direction of ie departdure from tbe

zero point there remains the value at the upper n E ad one bas:

~ ..
+ L- -- + ...

" (45)

Herv. one sees plainly the rehltion to the total potential in the form of

Secion 6. For 'E = c, IV goes over irdo the (formally) diferentited

total potential Eq. (301, Section 6, tae at the origin and dimiise b-y the

iLikewise ifiite) test dipol term. if E is, however, givez a ftnite value,

then all the terms are finite beczuse the infinite effect of the test dipole

s be taken ou - "x
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Through a similar calculation the following is obtained:

;- ZI ---

its. a n b - a ' (46)

In contrast to 1) there exists no term in ii(l) which corresponds to the

single potential to be subtracted. The reason for this is that in the dif-

ferentiation of Eq. (34) with respect to x and y no term appears which be-

comes infinite independently of the direction. In spite of the factor i. m

the accent on the sum in 11 may not be omitted, because the integral

over the term I = m = n = 0 diverges.

The series Eq. (45) for II.1) and (44) for 11(2) give the necessary data
xx xx

for the calculation of the principal indices of refraction inasmuch as it is

possible to find them without the use of approximations. In the following

sections, we shall make use of the simplifications resulting from the actual

orders of magnitude in the case of propagation of visible light in solid

bodies.

8. APPROXIMATIONS DUE TO THE SMALLNESS OF x.

Equations (42) and (43) established in Section 7 for the derivatives cf

the excitation potential at the place of the dipole 000 can be considerably

simplified when %, x and d. ca, d. 9, d.y are small numbers. This is

always the case when visible light in solid material is treated, due to the

fact that d is of the same order as the interatomic distances and

k0 , k, a, 9, - are of the order of i/fA. As already mentioned, the ratio
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of d/X is of the order of 1/1.00 to 1/1000 and the above quantities are of the t

same order.

Under these c rcvanstances, terms sucP as da/r occurring in the series

Eqs. (41) and ("a) Section 7, play a role only wheu i - m = n = 0.

We omit, therefore, in all terms of the series, the small values after

having segregated the term 000. This term is in 1 ( 1) according to Eq. (14),

Secton 7:

n2 d' n n V w (S 8)

2sabo n2 ;JI 2abo 1-'

where v .l xo is the index of refraction. The term is therefore of the

order of magnitude 1 in comparison to X.2

Because of the .'malincss of - the integral appearing in Eq. (45) of

the prec" '- section

has an integrn.nd which differs appi,'ciably from f only where the integrand

iG very small anyhow. We commit an error at roost of the order I: ,

when we replace this in t-gral with one indepe Jert, of Mg:

ed. -- "

(U)

Atter these steps, the first part of the excitation potential bo-coomes

s Sabo \1-+;7'.
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where in this approximation ik depends neither on xc and iro nor on the

direction of propagation of the wave, but only on a, b, and c.

Similar considerations are applied to 11 Eq. (44), Sectio, t. AlsoXX

here the small quantities of the order of mos can be disregarded in the

exponent of the e-function wherever they stand next to terms of the order

of magnitude 1, Only for the uwrm 000 would this not be the case; but this

term is excluded because of the accent. Thus 11 (2) becomes entirely in-
xx

dependent of the small quantities. We write in this approximation

11(2)i (2
z~2abe ~

(1) (2)
and obtain altogether for the excitation potential, after setting k + 02=

Sa.(T rCoss (,Z) ) (47)2ab

and similarly

Xf= - - s(,) Cos S, .(48)

uw~ 2abe 1w

In II and analogous derivatives, it is evident that no term v appears;
xy

for this term would be independent of the direction of propagation and thus

would also exist in ;he case of propagation along one of the coordinate

axes. But we know from symmetry that in this case I]l_ = 0 (see above).

Finally, we have in this notation:

-+ '•(4912ab %1- ,"

kr

__ _ _ __._ _ _ __ _ _ _ __ _ _ _ __ _ _ _ __ _ _ _ __ _ _ _
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9. THE DISPERSION FORMULA
I

In Section 2 we had to distinguish six cases of principal indices of re- .1
fraction, depending on the directions of the oscillation and of the ray. But

we have previously suspected that pairs of these indices would so nearly

coincide, that their discrimination would be practically superfluous. As a

matter of fact, we cmn now write down the equation for the propagation of

the optical wave in the z direction with oscillation in the x direction:

P + ('jIT'- 17"U). v +- -g ,-,. 1 'd -- p-,,-0

and we find, that in this approximation, because of the independence of tP

from the direction of the ray, the identical equation would be valid for VXY

that is for a = y = 0, 0 = k. We therefore omit the distinction between

V nxy and vxz, and we write vx for the principal index of refraction for dib)ole

oscillations parallel to the x axis.

Let v be the volume 8abc which contains one dipole; then for the index

of refraction we have the equation

,' - + - 1p m g (50)

or

_ + (51)

We recall the sigyiicance of the electron constant Q [Eq. (9),

Section 2]

- -* .o - na - i.



41

For a transparent crystal we set the frictional coefficient g = 0. Then
th..c dispersion formula is:

0I ri o P+ s)- n

(53)

or, introducing the wavelength X = 2 c
n

VS  2 + It B, - 4 n' l A" (54)

We have here before us a dispersion formula with two constants, of tle

sair e type as those of H. A. 7o rentz* and of Planck. The latter would be

in our terminology

2 1

whereas Lorentz has -(1/3 + s) in place of - 1/3 where s remains indeter-

minate. In all three formulas this term indicates the influence of the di-

poles of the body on a test dipole. The term 1/3 arises from the contri-

butions of the more distant surroundings of the test dipole, where the di-

poles may be spread out into a homogeneous medium. In Lorentz' terri s
is added the stroui. but unpredictable influence that near neighbGr dipoles

exert on the test dipole. For a cubic arrangement of neighboring molecules,

H. A. Lorentz proves that s = 0, so that in tis case his formula becomes

* I identical with Planck's.

*Cited under Section 4.
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Also from our equations specialized for a cubic lattice the term 1/3

is obtained. For in that case one has, by symmetry

1 __,, + VS, M 1 - | ,4w. 155)

But AV can be determined in the following manner: one develops the total

potential Eq. (30), Section 6 in powers of k obtaining

H= - ( ' l
Vi

when only the lowest powers are written out.

In order to obtain the excitation potential,

R R

should be subtracted from this. The term with k in the development of

II goes over unchanged in the development of 11'. Thus one has

A' ( , + +[A ... ) .

VI

4!.- +' 1 + p..)

By comparison with Eq. (49) Section 8 it follows that

jp 1,

and thus from Eq. (55)

+!

1 0+Va.*
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Insofar as the isotropic body may be replaced by a cubic arrangement.

our formula thus entirely agrees with the Lorentz-Planck formula.

Discussion of the dispersion formula thus obtained would add nothing

new regarding the dependence on the wavelength of tne indices of refrac-

tion and absorption than what has already been discussed by Planck.

Only those details which are produced through the anisotropy of

Eq. (52) shall be noted here:

(1) From two measurements of vx the quantities A and B [ Eq. (53)1

can be computed. The quantities t, are functions only of the lattice constants

a, b, c. Thus by using the value of a single principal index of refraction

at two different wave lengths one can obtain the complete dispersion formula

not only for this index, but also for the two other principal indices of re-

fraction.

(2) The constant A, independent of which index of refraction would be
2.

used in its determination should have the value v/47r. m/e which is

characteristic for the lattice. The same value of A should therefore be

found, no matter fiom which principal index of refraction it is obtained.

But one finds this relationship not fulfilled. For example ior anhvdrite,

lahydi-ous czl cium sulphate)

A= 1.6125.10-3 3 ; . = 1 6 7 2 6 1 0 -SS; A = I.5501.10 - 33,

values which deviate by 8 percent.

One of the reasons for this deviation is the fact that the electrons

having the proper frequency nO do not form the simple Bravais lattice that

has been presupposed here. A second reason is that in addition to the

electrons with the characteristic frequency no others with different eigen

frequencies and possibly ions with eigen frequencies in the infrared are

contained in the .;rystal.

The two-constant Eq. (52) is then to be understood as an approx:imation

to a formula of complicated structure and the constant A of the dispersion

Eformula consequently loses its simple meaning and can vary with the
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direction of the propagation of the wave or of the polarization. In this

connection the observation of Drude (1 ) is relevant: if in calcite incidence

is at right angles to the optical axis, the ordinary ray involved apparently

five electrons, and the extraordinary ray two electrons per molecule.

(3) From Eq. (52% it follows immediately that the effect of the lattice

arrangement can be interprete'd also as an anisotropic bonding of the

electrons in the molecules. The variation in the formula of dispersion in

passing from rx to v3 , or from to respectively can be replaced,

as Eq. (52) shows, for all wavelengths by a suitable modification of the

eigen frequency n0 . Located within the lattice, a dipole, whien in itsel is

bound isotropically, acqui-es through the influence of the structure three

ifferent eigen trequencies. The two views, namely attrihuting the origin

of birefringence either to the inherent anisotropy of the ultimate particles,

or to the anisotropic arrangement of isotropic particles, thus cannot differ

in their qualitative consequences.

10. THE EQUATION OF THF NORMAL SURFACE

We have dealt up to now exclusively with the principal indices of re-

fraction, six of which we had to distinguish originally. With neglect of the

terms of the order (a/X) 2 we recognized that indices referring to the same

polarization are equal to each other. This made the properties of the lat-

tice equal to those of a bi-axial crystal.

The question is whether this equivalence is true for all directions, that

is, whether the relationship between the direction of the wave normal S and

the index of refraction, which is contained in the deteiminant (Eq. 11,

Section 2), is the same as in the orthorhombic crystal.

Retaining the same degree of accuracy, we introduce the values of

Eqs. (47), (48), and (49) from Section 8 in the first line of the determinant.

11) Ann. d. Phys. 14:691, 1904.
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This line becomes

-- -- (1)) +

COS ,. COSS ; .2ab r COS (Sz)COS s. .

We introduce the abbreviations:

COS (s, z) = cosl...

and

2abcQ±

Thus the determinant reads:

Nsin2 I-N 1 -N cos 1cos2 -Ncoslc 3
-Ncoslcos2 Nsin'2 - N , -Ncos2cos$ ( 0.
-Ncoslcos3 - N cos2 cos3 Nsin2- N

We write in the diagonal (1 - cos 2 .. ) in place of sin2 and take out
the factor which is non-zero except in trivial cases:

- N3 cos2 1 - cos2 2 - cosz 3

There remains

N--N,

N IV
I v-6,ilI I Io

~(vcoa' j

I ( '') I
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or, except for a factor:

N ew X Yeos2 NYe s'
N -N, +4V--V, V-x -1l O.

This equation is nothing other than that of the normal surface of a bi-axial
crystal. Replacing the 1 by cosl -- cos 22 + ces 23 and the N... by their

e--presslon in v, one obtains the equation in its usual form:4

31

Thus we see, that a point lattice of the kind consideredL behaves with

respect to all directions as a crystal and that from the slandrjuint of optics

there is no objection to even the simplest lattice mode- of a crystal.

li. THE BIREFRINGENCE D

Already the general considerations of Section 2 have indicated a

relationship between the prL-U-ipal indices of refraction, wiich according

to Eq. (14) Section 2, is

(,aH'- 1'1  (Air - 11,,) (56)

The indices z on the parentheses indicate that on both sides of the

equation the potentials are those for the direction of propag.Ation along z,

but that on the lefthand side, plarization is along x and the refractive

index is vwhile on the righthand side polarization is along y and the

refractive index is *i

If we insert in this relationshi,: the approximate values of E-qs. (47),

(48), and (49) from Section 8, there results



or since A t is the same in both cases, we obtain

The dimensionless quantity on the lelt, which was recognized already by

T. H. ilavelock as independent of the wavelength, we find dependent only on

the ratios a:b:c of the lattice periods. We call it the measure of structural

birefringence.

Through the series Section 7. we are in position to compute these

constants for arbitrary ratios a:b:c. For a suitably chosen crossover

point E, the series converge rapidly enough to make the numerical calcula-

t -m easy.

But at present it is not yet premising to undertake the calulation for a

known crystal in the hope of flnd'ng agreement between calculated and ob-

served values. None of the crystals whose structure is known up to now

(Fall 1915) has a structure so simple that one could assume with some

measure of certainty ti-at a single kind of electron is adequate to render

its optical properties.

The numericE I computation and the extension of the theory to more com-

plicated space lattices shall therefore be omitted here.

Only in order to give a general idea about the expected order of the

magnitude of the effects, we take for the calculation the ratios
a:b:c = 0. 8932 : 1 1.008 which are the same as those of anhydrite. Cal-

culation leads to

D.1 0.17848 D.=O0.17983 Dy =0.00133.

whereas the observed values for the same material are:

L:



Do. =0.05145 D, G.05925 =r, 0.0054

From this it may be concluded that the anisotropic arangement alone is

sufficient for explaining tbe order of magnitude of the observed bire-ingence.

That the simple assumrptions concerning the space lattice do not suffice

for rendering the e'enomena, is also indicated by the fact that the observed

values of D are found independent of the wavelength only to a moderate

extent. Thus in quartz the variation of D between the lines C and E of the

spectrum is 15 times smaller than the variation of the do-ble refraction

(w -e) in the customary sense. In most crystals the variation of D is
some 3 to 6 times smaller than that of the usual birefringence, but there are

crystals for which D rkries more than the birefringence.

Whether the constancy of D could be valid for arbitrarily complex point

systems constructed of one !dnd of electrons may remain undecided. Cer-

tainly it is not valid for complex point systems with different sorts of ions,

since it is not possible to eliminate the two or more electron constants .

from the two dispersion equations for Y and vY.

Unfortunately no similar simple relationship for two sorts of electrons

or ions could be found between the three principal indices of refra,--tion,

which would be valid regardless of wavelength.
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Part il. Theory of Reflection and Refraction*

1. iNTRODUCTION

1.1 Problem

Let the upper half space be filled with a lattice of dipoles with the co-

ordinates

X ==2el; Y - 2bm; Z =2cn, (58)

where 1, m, n are integers and I, m assume all positive and negativc .alues,

while n assumes only positive values (including 0). Further let a plane

wave be incident on the lattice from below and let its wave norma! have the

direction s o0 (see Figure 1). Its periodic function is

• (59)

Find the mode of oscillation of the lattice and the thereb- created

optical field.

. Continuation of the work by the same title in Ann. d. Phys. 49:1-38,
1916, quoted as Part L
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IEnterior

Figure 5

1.2 Procedure of Computation

A procedure which appears to hold little promise would be to write

down methodically the excitation equations for all dipoles and to solve them

beginning with those at the boundary. The force terms appearing on the

right hand side of these equations would themselves depend on all of the

dipole oscillations and at that, in a most complicated manner. Consequently

the computation of the force without previous knowledge of the dipole oscil-

lations is by no means practical.

Another method of solution exists in making a suitable assumption for

the dipole oscillations. We can then actually sum the electric forces and

satisfy ourselves that the dynamic conditions are fulfilled for the assumed

mode of oscillations.

Therefore, the assumption is made here that in the crystal, up to the

very boundary, there exist planes of equal dipole phase. In the imbounded

crystal such an assumption leads to the propagation of a plane optical wave.

Let the wave normal of this dipole wave be s, and its velocity q.

Then the summation o; .,e spherical waves issuing from the dipoles

does not yield, as in the case of the unbounded crystal, orly the field of a

plane wave, which propagates in the same manner (velocity q, direction sw,

as the dipole phase. Rather, there occurs besides this field -iside the

crys3W, a plane wave with the velocity c whose direction of propa~siuu s O,

is related to s by the law of refraction. Moreover, in outside space, a



1!51
wave zomes into existence which is a mirror image with regard to the sur-

face of the last-mentioned internal wave and it has likewise the velocity c.

The outside wave is the reflected wave. The first inside wave ((D is the

refracted wave. The \wave on the inside of velocity c is the one which is

required by dispersion theory in order to cancel the incident wave. It

begins with full strength at the bo-undary and can therefore compensate the

incident wave sO throughout the interior of the crystal. (It is called for

short, the internal boundary wave.)

This result already offers the solution of the dynamical conditions for

the dipole oscillations. For when this same boundary wave and the incident

waie cancel each other inside the crystal, then only the same field remains

inside the bounded crystal as in the unbounded crystal, and we only have to

see to it that the assumed dipole oscillations are compatible with this field.

Thi.s is accomplished when the propagation velocity of the refracted wave

has the correct value, as was shown in the dispersion theory.

W Amplitude and phase of the internal boundary wave are determined by

the requirement that the incident wave be cancelled. Since the three waves

which are genrc__ted by the dipole oscillations show definite amplitude and

phase relationships, the amplitudes and phases of the reflected and re-

j fracted waves are also determined by this condition of cancellation. The

resulting relationship between the amplitudes of the three waves must be

-k that given by the Fresnel formulas provided that the correct transition is

made from the microscopic field to the phenomenological Maxwell field.

Le' i be said at ',-ace that we res-trict our thinking to the case of a

cl cryvstal which is thus also opt-c:FAiy isotropic, In this way complica-
ticons will be avoided, which wo-Ud oniy detract fr m the essential!. of tl.e

theory. Notwithstanding this, we distinguish n the formulas, .the three

axis intercepts a, b, c, wtVch, if desired, immediately may be cmn-idered

Zas eq'jal.

_-
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2. TilE SUMMATION OF TIlE DIPOLERAVES

As in the first part, Dispersion Theory, we employ the Hertz potential

of a dipole in the form of expression Eq. (23), Part I, Section 5, namely

with omission of the factor ea e

eik.l e + iCC ia(X-z)± iM,(Y-!iA± iviz--) dl dp dv

(X, Y, Z) are the coordinates of the dipole, (x, y, z) those of the fVeld point.
The variables X,., v run parallel to the real axis between it and the point

ko, (which, initially, is thought of as having a positive imaginary part)

(Figure 6).

Th potentials to be summed are:

a (61)

X-Plane

ko

Figure 6
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i Here (in the terminology of Part I, Section 10)

kS = cos I X +k c- - ks3 • Z

=aS:% -r-YZ. (62)

This corresponds to a progressive excitation along + s.

Iii On performin, the summation under the integral sign in Eq. (60), the

threefold sum is decomposed into the product of three simple sums. Of

these, the first two whose indices I and m run from -C0 to +co, are identical

with the sums over I and m which appear in the corresponding problem of

the unbounded crystal (see Part I, Section 6). Our present assumption

differs only insignificantly from that made there, namely in the signs of

I ax,,. These are easily changed in the results of the summations. The

sum over I thus produces here In the integrand the factor

I sin i(+2 a)0-e-  sin i. (63)
S coS 2a i -coa 2a a

and similarly for the sum over m.

On the other hand, the summation over the index n extends only from

0 to oo and we have:

_ics.v + -c- ' .,(64)

In order that the sum converge, v + -f must have a positive imaginary

part; thmt is, v must be conducted on a path above - y. In the former

sums, as also in the unbounded crystal, it was required that X be led

above a, p above 0. The feasibility of this requirement provided the sums

are unconditionally convergent has been discussed in the thesis and has

been attributed to the fact that ko has a larger imaginary part than has k.II0

I
F
I.-
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This assumption is also here necessary for the summation. In the result

we go without further discussion to real k, k0 (see Part I, Section 3).

The total potential of the "half crystal" consequently becomes:

-2iaa

I fffwun?(x±42a)-t,-2 sin Ix
- "n'JJ cos 2i - z.-s 2aa

-2ibP
sinji(y- 2b' e sifly

cos 2by - (os *bl (65)

- ~ i~dp dv-e 0 d d

From this description, which is valid for all , u;s of (x, y, z) we pro-

ceed to a description of II as a sum by reducing the *re-,- integrations to

circulations of the poles of the integrand in the ccmplz-: plane and evaluating

these by residues. This entails of itself a distinction of i=er and outer

space with each containing different groups of waves.

The first two integrations over X and M are identical with those in the

expression Eq. (23), Part I, Section 6 for the potential of th. ui vbounded

crystal. They will be treated just as there. By utilizing the faA that the

integrand is an odd function ot the variable, the path of Figure 6 can be

completed by one rumning below the real axis. The series of poles of the

integrand now lies between the two paths at the positions

L

o = _ -(66)

Residue development in the integral over I yields the sum

_ _ _ _ _ _ _--(67)

" -'-"

I

I
3
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and the same treatment is applied to the integration over 11. (Compare

Part I, Section 6.)

By this transformation of the integrations over X and W the potential of

the bounded crystal becomes:

I O

d (ti8)

This is a mixed form of the potential, inasmuch as two integral signs have

been replaced by summation signs, wl-dle the third integration still re-

mains. This form shares with Eq. (65) the advantage that it is valid for

the entire space.

We now proceed to replace the last integral also by a sum of residues.

To this end we observe that the integrand has two classes of po!--s ac-

cording to whether the first or second denominator is zero.

ILI --e-ir(,+r = 0; r = - , where n is an integer (69)
C

This series of poles corresponds completely io the poles Eq. (6< in the

X and m plane, at which the residues were taken. The poles lie ca a straight

line parallel to the real axis and below ". out above the point -2. This

line thus is between the integratien path for v and the point -k 0 (Figure 7).

b k- ( k. -aul- (m~Z-b). =

that is ** (70)

/ 1

* The position of this line was stated incorrectly when published and
is corrected here.

** The words "that is" have been supplied in translation in order to
clearly separate the two statements of Eq. (70).
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--Plane

b)

(a)
-k -c *

(C)

Figure 7

By - ' j we understand the value of the root which is situated in the first

quadrant. These poles form a chain which sheathes the branch cut of the*

root extending from k0 to infinity . With increasing I and m the poles

become ever more imaginary.

(c) Also the other root value, thus under retention t'f the positive

sign for the principal value, the value

V = -VI

causes the denomL-at or to vanish.

Altogether: three lines of poles exis-t in the v plane as shown in

Figure 7.

The in.tegration Path for v runs, as mentioned, parallel to the ;.'eal

axis between the pole series (a) and the series (b). This path can either

be deformed upwards and then contracted about the pole series (b) with

circulation about each pole in the positive direction: or it cn be pulled

downward, namely in case that the integr'nd vanishes exponentially at

Clearly this braich cut does not exist for the integration over Y
since in the denomir.tor only v 2 appears.

I
I
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Sninity in the lower half plane. In doing so it remains held by the pole

series (a) and (c), (both with negative circul'.'%n of the poles).

The condition for the upward deformation is that the factor

vanish at infinity in the upper half plane, thus

i z<0

This is fulfilled in all outer space.

The downward deformation on the other hand is permissible because

of the same factor, provided the denominator becomes infinite more

rapidly than does the numerator. That is when

z +2c>0

which is true in the entire inside space.

These limits show that a domain exists at the boundary

-2c <z <0

in which both deformati.ns are permitted. The nmdary domain continues

the crystal beyond the cut off at z = 0 into outer space and ectal.isbes thus

the transition rem inner to oter zce.
We have naw to ob ain the xesidues.

2 Ntside Spare -. Neative: Pole -,ene vb,

We have

1 1 1

__ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



58

and thus the sum cf the resihes:

2ab~.~
- =(71)

1 I
I 

2 a
c

(
v

t ta + yj ,

This is the potential II a which is valid in the outer space. It is a double

sum, wherein each term appears to have the form of an ordinary plane

wave. In fact, this is true only for the term 00 given that for visible light

k0, a, -,y are small compared with 1/a, 1/b, 1/c. For the same reason

a!! other terms for which vim is positive imaginary represent inhomo-

geneous waves. (See, however, SecLion 7).

2.2 Inside Space. z + 2c Positive; Pole Series (a) And (c)

The residue at a pole of the series (a) is found by development of the

integrand in proximity to the pole. There

and nearby

- Zat'. - r -2i{ - . .

Because of the negative sense of circulation, the residue is multiplied by

the factor -2L The potential becomes - we designate it 11 :

=abc

lit- - - m-'- -' -c
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Except for the already frequently mentioned change of the signs of a, $, 'Y

this is identical with the potential of the unbounded crystal. [See Part I,

Section 6, Eq. (30)].

Finally, as a second part of the inner potential, the double sum over

the pole series (c) is to be added; but for the sign of Vim and a further (-i)

because of the negative circulation this is equal t- the sum of the residues

at the poles (b):

f-[€= 2ab 
(2

21'f1 -iCf -

What has been said about the character of the sum Ha is valid alho for ."

The total inner potential is obtained by adding together the two con-

stitue--to:

I7,Th.j-I!c (74)

2.3 The Boundary Region. z Between 0 And -2c

In order to become familiar with ths sums we may study the boundary

region in which both expressions II and ri should be valid. Without going

back to the integrals and the deformation of their paths, it is easily shown

on the series themselves that both expressions are identical inside the

..- ndary zone.

To this end we assert

17. -- H, = H , (74a)

and have to prove that the threefold -m on the right-hand side is equal to

the difference of the double ;-m-s.
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It is easily seen that the third summation, over n on the right-hand
side has its origin in the Fourier development of the parts containing m

in the double sums of the left-hand side. In 3ompaxg Eqs. (71), (72) and

(73) one sees that for z between 0 and -2c one should have identically

-e + 9 ViC(
,,. • 1(75)

The easiest way to prove this relationship is to prepare the sum on the

rghthand side in the following way: Start with the development of e-il- in

the interval 0 ... -2c which is

+, . C -iu ic; Rin ve.W ' (76)€= --. 'I (76)

Bring the factor sin vc • e over to the other side; there remains a

developnment with coefficients

1

The coefficients of the series in Eq. (75) are

B.= =1 1 1 1
V'.2 - (n.t" a -0 2,.,. vj+7-'TlC -V+7-,,.n/€"

Therefore the value of the series in Eq. (75) is the difference of two

exponential fmctions:

2 sin(V +'Isi (-v+C si
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The righthand side of this equation, completed by a factor i/c is after some

easy manipulation equal to the lefthand side of Eq. (75). This shows the

identity of both developments, namely Eq. (71) and Eq. (72) Eq. (73)

within the boundary region.

3. APPROXIMATIONS FOR OPTICAL AA\ES

Before we proceed to satisfy the dynamic conditions at each dipole by

means of the incident optical wave, we will attempt to cbtain a survey of

the nature of the fields represented by the potentials. There are two cases

to distinguish:

(1) In the case of optical waves, the quantity a/, that is, the half

distance of the lattice points measured in wavelengths, is a small number

of the order of magnitude 1/100. In our equations this means that

k = n/q = 27r/ and together with it ko, a, 0,, are all small compared to 1/a.

(2) If an X-ray goes through the lattice, the rigorous computation

based on the assumption Eq. (61) is valid as in case Eq. (58). This time,

however, ak is of the order of magnitude of 10, since the wavelength of
0

the usual X-rays (maximum 1A) is more than 1000 times smaller than the

wavelength of light. This case will be treated in Section 7.

3.1 Opticai Waves

3.1.1 THE INNER WAVE 1q.

The potential TI is already known from Part I. It is sufficient here toq s
recall that it contains two factcrs, one of which has the form e ik s of a plane

wave which proceeds in the same manner as the dipole phase of the lattice.

The other factor is a threefold sum which describes in the manner of

Fourier a function which repeats from one elementary parallelepiped to

another. The optical field must obviously be defined by an averaging process

in such a way that the variations of this rapidly changing constituent are
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eliminated. For this purpose, one integrates the second factor over a

parallelepiped thus obtaining an average potential

-- .1~ -i(az + pry + :, I(7
S- f'l0 4  

- :"e (7,7k )

To see how this is related to the macro copic field strength, see Section 5.

3.1.2 THE INNER WAVE l c

The nature of the terms of this double sum is determined by the value

of

ts + it a ~ (a-b) (78)

In the optical case only the term (0, 0)

1,00 = 1To!:,-(a + #) (79)

can be real: Ail other terms are definitely imaginary. AMl terms of he

sum except for I = m = 0 represent in iomm.oneous waves, whose ampli-

tudes decrease in the z direction according to the factor

eir'.:

The higher the indices, so much faster 's the decrease. Tf we bave

Vol= / i'vib (79a)

the factor becomes

e -.-C Z b
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If we take the case of cubic lattice , where a = b = c it thbv occurs that the

amplitude of the wave through the first dipole layer z = 0 has only
-2. .

e =- 0.0018 of i's amplitude a2t the start z = -2c of th bc!' .!ary region.

The same ratio of the amplitudes of the inhomogeneous wave holds between

the first and second dipole layers.

The rapid decrease of the irnhomogeneous waves towards the inside

allows one to assume that they are of no importance for the essential

process of reflection and refraction. They do not noticeably influence the

dynamic condition of the lattice even in the outermost Payer of atoms.

Besides the attenuation towards the interior, also the ampli-t-ude itself of

the inhomogeneous waves is of an entirely different order of magndtude than

k that of the homogeneous waves, especially the homogeneous wave 00 of the

potential 1c . For the term 00 the factoi 1/vIm i Eq. (73 is, because of
Eq. (79) of the order of magnitude 1/k. For the inhnogeneus waves of

I the higher terms, however, it is only of mag.'tude 1 Eq. (79a).

IFrom all this it is justifiable to neglect the inhomogentorus waves forI
the whole inside, including the atoms in the boundary and to take into con-

sideration for the dynri.ie -covIdttfon, which must be satisfied at each atom

only the potential 11 and the term 00 of the potential II.
qc

We must briefly inspect this last term. We have

M 0 F-;i _M (79b)I , ~ ~~~c - - --/kQ sin+

= 40cos 3

where v, = k/k0 is the index of refraction, and (8) and (.o are respec-

ively the angles formed with the z axis by the refracted ray (constructed

according to the law of refraction) and by the incident ray:

sin S.

si,
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The only remaining term from 1 e is, when written out in full:

m in iax+ity+ikewos 1 fi - e80)
2ah 1 __-2ece3,-y) Aj cos

The wave normal thus lies in the plane formed by the refracted wave and

the z axis (plane of incidence). The phase velocity of the wave will be

recognized from

|V-2 + ,2 + vOo -2 ao [See Eq. (?9b)]

as the light velocity in free space. Finally the angle to the z axis is the

same angle (V,), under which an incident wave would produce the internal

wave by refraction.

In the approximation which neglects terms of higher order in ck0 the

factor

1

may be replaced by

i 1
2ie k, cots- (80a)

1in3

3.1.2 THE EXTERNAL WAVES Ha.

The potenti-l Eq. (71) in outer space is very similar to the potential Ile

just discussed. Also here the term 00 exceeds the amplitude and significance

of the other terms and one can restrict oncself to that one term.



65

The term is here

j;. iax +i/331ikecwa32  I11 /O e. ie=+C,-+,) (81)=~2ek meb Mt-e" -  + " y k.Cos S

The wave thus again proeeeds in the 'lane of incidence". It is the mirror

image of the wave f1e with reference to the surface and has therefore the

direction of the reflected wave, which by Snell's construction, is associated

with II as the refracted wave.
q

its amplitude is different from~ the inner boundary wave l11, since here

the factor next to the last is replaced by

1 3 8n 3
2ie k co. r -+ 71 2ie k, sin (3 + 81)

2 LFigure 8 shows the three waves with their propagation directions andI

Ivelocities.

q

z 
q

r7--

I 8'I!
V

Fiur

I
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4. FULFILLMENT OF THE DYNAMIC CONDITIONS,
THE FRES\FEt. FORMULAS

The theory of the unbounded crystal has as its objective to show that

the assumption of planes of equal dipole phase leads to a dynamically pos-

sible state. As a condition of this self-consistency it was found that the

propagation velocity of dipole phase and with it that of its accompanying

light wave must have a value determined from the dispersion formula.

For the bounded crystal the field by which a dipole is excited results

from t;o potentials, the potentials II and lc , from which however there~q
is to be subtracted the part which is emitted by the excited dipole itself.

Since Iq everywhere, even for the outermost boundary atoms, is identical

with the potential in the infinite crystal, the same field of excitation, and

therefore the same mode of dipole oscillation is generated in the bounded

as in the unbounded crystal only if 11c can be suppressed. As the dynamic

conditi-n for the feasibility of the assumption of planes of equal dipole

phase we retain here as there only: that one must choose the correct phase.

velocity q. In the optical case the potential Ifc reduces to a single bomo-

geneous wave that geometrically coincides with the incident wave extended

into the inside of the crystal. Therefore the amplitude and phase of the

dipole wave can easily be so adjusted, that [ e and the incident wave cancel.

In order to accumplish the transition from the potential to the field

strengths, we take some consioei3tions befo, hand which will be system-

aticallv discussed in Section 5. In doing so we limit ourselves here to the

case of a cubic crystal (a = b = c, wave velocity in all directions of equal

value, dipole oscillation at right angles to the propaegation direction s;

compare dispersion theory). All of the potentials when completely written

out have the form

ea ei1 ce,

where x is either k or k. and ect = signifies the moment of the dipole.

According to Part I, Section 2, Eq. (4), the field strength Is obtained from
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the potential by the operation curl curl. We assert here and prove it in

Section 5, that this operation in the general case yields the dielectric dis-

placement 2). Only in the case of empty spane, E 1, does it likewise

yield the electric field strength (, which then is equal to A.

Take as the propagation direction the x axis; we obtain from the above

potential

a, .- ez C ~ e*

IThis means generally expressed: In converting to the field, inly the

t.omponent of the amplitude at right angles to the wave normal produces a

centribution. The field of the vector Z differs from the field of the

transverse part of the vector potential by the additional amplitude factor
x 2 or kD"" We have thus to distinguish two cases: one in which theIdipole oscillations occur at right angles to the plane of incidence, and the

second in which the oscillations occur in the plane of incidence. Tu the first

case the full amplitude a is valid for all three waves; in the second case

I the amplitude is reduced by a cosine factor.

From the potentials Eqs. (77), (80), and (81) we obtain according to

this, the following field strengths for the refracted wave, the boundary

wave, and the reflected wave when the oscillations occur in the plane of

incidence:

L Refracted wave:

£
4x P k-aI

E
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EL. Boundary wave:

-- acos (3 - 3) . _R (82)

Z;a(3-,V 3 (Coutd.)

IL Reflected wave:

a - cos33- a'3 ) M em

Here v = 8a 3 is the volume of the elementary cube. if the osclations are

at right angles to the plane of incidence, the first cosine fbctor is omitted

from 2), ad T .

Now we relate the incident wave ", and the bodam- wave acco_-ing
to the cidition of caelIlation

T. ~= - T.-

For osMations in the plane of in-idee, the ampItde of the -eftacted

wave is then expressed by the ampitude of the incident wave as:

a2 'V VM-1- wS
V- si 3 3

2 "-2 6M#- 3 Cs °s (83a)

-2 . , c ,,,+S?-eaI(-3,1 **

•Tle abreviation tg has not been changed in these equat - it is

obriously tam

The fr-llwig formulas am seftl for the cmversion:

P2 co*23, - Y c=2 3Si - (:€s3 - - i3

Further: ow 38 - cm 3 sin (3 - 3,
.... 3 (3-= 3,)
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and the amDtmie of the reflectted wave as

a*j I .+~ 93An(3 - 3j t (86- 3)

C04 Sf-SV sin (3SO) t (S + 1) *$(93)

Finally, for the case in which the oscillations are polarized at right

ansles to the plane of incidence. the refracted wave would be mult~plied by

the hactor cos (S - 8)and the reflected wave would be multiplied ay

The formulas for oscillation at right angles to the plane of incidence are

thas:

-- 1 aS-, MinS3)

T. gnrs-% (84)

These formulas uxe in agreemnt with the Fresnel formulas for the vector
j ~),the dielectric displacement (compare the formula for 4 in Drude Lehrb.

d. Opk L Edition. p. 258-262).=1 The preceding treatment of the problems of reflection and refraction
I has been developed strictly within the framework of the ttory of electrons.

It contrms the e etations of thethor of dispersion rgdigthe in-

fixence of the boandtxy. The fact that an Internal bouadxv wave appears in

I the electron theory is the point which allows a deeper lntsigit fito the prob-1 lem then- the derivatioia according to Alaxwell on the basis of boundary coa-

ditions. Even tbough these bcvindazy conditions were estakbisbed from the

I ~,**See footnote onx page b&.
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concepts of electron theory, the very characteristic property of tht

boundary lies concealed in the boundal- conditions and it does not _jear

as distinctly as above: why the- electrons are bound to oscillate in the

described manner i order that they harmonize with the total field of excita-

The difference oi the Fresnel formulas in the two cases of polarization

is clarified here in a very direct way as bei'g due to the component forma-

tion of the dipole amplitudes. A particular ca-e of this is the familiar ex-

planation of the Brewster angle, as that angle of incidence for which the

oscillations of electrons in the body (so far as they occur in the plane of

incidence) have the direction of the reflected ray and are thus optically

ineffective in producing its amplitude.

5. OBSERVATIONS ON THE TBANRTION FROM THE MICROSCOPIC FIELD
TO THE VECTORS rX AND Z OF THE WAXiELL THEORY

The Fresnel formulas were derived in the preceding paragraphs by

replacing the potential II by its average value over an elementary

parallelepiped; by further performing the operation curl curl on this average

value, and by claiming that the macroscopic field of the vector 2) may be

obtained by this method from the microscopic field.

The reason for this procedure is analyzed in the following.

The vector potental was chosen In view of an easy description of the

field of a dipole. In so doing, in particular by setting 4= curl curl

rPart 1, Section 2, Eq. (4)), it was assumed that the field propagates !n

empty space (e = 1). The potential e0/R satisfies the differential

equation for vazu

By this rule also !n Part I, Section 7, the excitatic-a field was obtained

from the exciting potential.
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By averaging the total potential all to smcoth the fast, fluctuations,

we find that the optical potential now satisfies the equation

k2 0kY~ (85b)

2

k is the constant occurring for the propagation in a medium with the

dielectric constant c (= v2). But whenever a vector potrintial satisfes

this equation, then the operation curl curl produces fro'i it the vector;)

the dielectric displacement.

This follows from the definition of the vector potential. It is intro-

duced for a body with the dielectric cnstant e so as to lead to. a solution

Aof Maxwell's equations

curl (F; (86a)

/*= curl ro; (86b)t
div fp 0(86c)

div D-= 0 (86d)

4~ '86e)

One determines in view of Eq. (86c) carl • such that
I

A 1curl i~r

the second equation then makes

= curl curl )e

whereby also Eq. (86d) is satisfied.

One can now dispose of div 1[ by putting

div W 0,
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thus Eq. (86a) in connection with Eq. (86e) requires

0 or A + k3% - 0. (85b')

Let it be noted immediately that for an orthorhombic crystal the relation-

ship between (% and Z is not given by Eq. (86e) but by the three equations

and that thus the three components of W satisfy different equations

Eq. (85b), in which, instead of the uniform e are substituted ex, ey, a for

the three components W, I, I But here as in the isotropic body

(cubic crystal) it is always true that

curl curl A =). (85c)

So much for the reasons that the method used provides the Fresnel

formulas for the vector Z and not for ;.. However, a remark may be

added on the transition from the diffei a ial equations Eqs. (85a) to (85b),

which is connected with the definition of the volues ( and Z and which

throws an interesting light on the logical aspect of the first part of the

theory of dispersion.

The total potential satisfies Eq. (85a) before averaging: Ea. 185b) after

averaging. The integration over the elementary parallelepiped can pro-

duce a change in the differential equation only be-ause it includes an In-

tegration over the pole. For the integration of $, which wouid become

infinite as l/h, the pole is insignificant. However, if A is ntegrated

over the pole, the near vicinity of the pole contributes, as is well known,

a term 4np, where p = e- a signifies the moment of the dipole, while

the remainder of the integration space produces A$ where $ denotes

the average potential. The average of the Eq. (85a) over the volume v thus

gives:
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4* + a's + L 0po. (85d)

If now the average of the potential is the potential of the Maxwellian

quantity Z then it must also satisfy the propagation equation for Z

That is, we must also have

dl$ + k'$ 0. (85e)

From these two equations, the average value of the potential itself follows:

or

4-n
I(85f

But, this is exactly the result from the theory of disnersion [Part I,

Section 6, Eq. (31)] which was again derived in Part H by averi'ging ovei

the sum of the dipole fields [Eq. (77)].

One sees: If it is assumed that the average value of the potential is
the potential of the optical field and therefore satisfies Eq. (85e), then it is

not necessary first to calculate the exact fields produced by the dipole

oscillations. Rather, one can infer the Maxwell field quantities directly

from the assumption made concerning the dipole oscillations. Whether the

2assumed state of dipole oscillations is dynamically possible, one is, how-

ever, not In a position to decide without going into the details of the field.

But otAy a knowledge of the fields in the immediate vicinity of the dipoles

I(the excitation fields) wo~id be required for finding the answer.

The logical place of our computation of the total field from the as-

sumed dipole oscillations is, in Part. I, the theory of dispersion, an

existence proof. Without using the assumotions inecessary for the deriva-

tion of Eq. (85f), it is shown that there exists an average value of theII
'I*1
4 --- -

4



74

potential which satisfies Eq. (85b) and is therefore the potential of the

optical field. In the theory of reflection and refraction on the other hand

the computation of the total field serves the purpose of resolving the

dynamics of the problem. It could therefore not be omitted, even if

relationship Eq. (85f) were used.

In conclusion we compare our definition with that used by H. A.

Lorentz. (1) The latter is, written in our units

- + 4 r,

or

- (85g)

The same relationship between the dielectric displacement and polarizationa

we also obtain from the relationships Eqs. (85c) and (85f) in all cases in
which the assumption of the average polarization is descript.ve of a state

which is consistent with the Maxwell Eqs. (86a) to (86d), that is, whenever

dp + k-o =0; divj= 0

We have then from the definition Eq. (85c)

= curl curl 4 = - 4 - curl curl

k"s -k 1 '

in agreement with Lorentz.

(1) Enzyklop, d. math. Wiss. V. 14 (XXI), (XXV), (XXX1) and
No. 30.
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The definition contained in Eq. (85c) thus leads to the iamiliar vector of
dielectric excitation or displacement for all states of dipole motion which

k_ permit comparison with a Maxwellian field.

6. WAVE EXIT, TOTAL REFLECTION

In order to study the exit of a plane wave from the body, which as

before fills the upper half space, only small changes in the final formulas

are required. This case differs from the preceding one only by the reversal

of the wave direction, that is, the values a, 3,y have to be replaced by their

C negative values. We make this change, and the principal terms of tYe three

potentials Eqs. (77), (80) and (81) then read:

1t 1 (87a)

£ 2ab .1~o

- liax - ify + i,05=in 1 1 (

"C 2ab~ 1 2 ic(vh+y) (87b"

H7 a-bc e ; -k' (87c)

Here vO0 has the old value:

hI P. we recognize again the old wave of velocity q, now, however,
q

runmning towards the boundary. Its amplitude is unchanged.

Ha as w~ell as ri have the phase velocity c and have their angle with

reference to the z axis preserved, bui the angles to the x and y axes

-i
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changed, so that the negative axis directions replace the positive ones.

Also the previously given amplitudes are changed. We substitute as above

[Section 3 Eq. (80a)]:

I by I
I-2c2ic (Y- -'

(87')

1 b 1 1

by2 -- -2 (v ro +i y)o+

(87")

The pictures nf the waves which result from incidence and exit are

compared with each other in Figure 9.

--- Incidence Ei

a

Figure 9

One now sees easily how to fulfill the dynamic requirements. The

Internal wave of velocity c has to be removed, since .t woul disturb the

electrons whose oscillations are balanced only against the wave of velocity

q. This Ms accomplished by considering the dipole oscillations coupled to

the internally reflected wave q' wh-ich would produce an internal boundary

wave c' of the same direction as c. (Figure 10). Its amplitude is deter-

mined by the requirement that c and c' cancel each other. This gives at
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-C

a'

Figure 10

the same time, the condition for the newly introduced dipole oscillations

I to harmonize with their field q'. Finally, the field which appears n the

outer medir- as the transmittea wave of amplitude a" arises from both

component waves q and q' that Is, from a and a' superimposed. We set
I the amplitude of the wave striking the boundary surface from inside equal
t to 1. Thus we have the following formulas fo-" th amplitude values of the

Ipotential:

t .L. (k-k-) from Eqs. '87b) and (87") (88a)

Therefore

C + k 02 _ k 2)" 7

and further from Eqs. (77), (80), and (80a)

(88b)
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and hence from Eqs. (87a) and (87'), and Eqs. (77), (81), and (81a)

" - Qr(  -( . A!) (k_ 2s . (88c)
r- &-r T 100 Y r ,

In going over to the fields, q and q' have to be multiplied with the factor k

the wave a" in outside space however by k0 2. If we continue to set the aii-

plitude of the field strength of the wave q equal to 1, then the amplitude a"

contains the factor k0
2 /k 2 = 1/V 2 . By utilizing the formulas mentioned in

the footnote section 4, page 68, the amplitudes of the internally reflected

and the transmitted wave, for the case that the oscillation is at right angles

to the plane of incidence, become

$in (3-.). ,, 2 cos (S mi.) (9)" " u " 3. + a - -;i-si (s + 3()

These are the same values as are obtained from the Fresnel formulas

Eqs. (84a) and (84b) when the angles (3) and (V.) are interchanged and

v is reolaced by 1/v correspondng to the progression from an optically

denser to an optically thinner medium.

Fulfillment of the dynamic conditions has thus provided the correct

amplitudes also in the case of wave exit. It was tacitly assumed for the

last conversions that

V_ Vh''-, 2 - = l- ,Sain3 3

may be replaced by k cos 3.. This implies that we are not dealing

with the case of total reflection.

Let us assume now, that the angle of incidence (8) of the internal

wave with the boundary surface is so large that total reflection occurs.

V is then imaginary and the two boundary waves associates with the q

I0
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wave in inner and outer space are no longer homogeneous, but inhomo-

geneous. They agree in this regard with the higher terms of the series

Eqs. (71) and (73) for the potentials "~a and l e whose principal (00) terms

they were. But compared with these higher terms, for instance the term

(01), they show a quantitative difference in the degree of inhomogeneity.

!. While
I

~~v= 1/Io-'-a 1 (. /b-dj:r /,v. a"o - -(. i -

[ has an imaginary value of the order of magnitude of 1/b,

-is only of the order of magnitude ko, that is, I/X. The inhomogeneous

wave (00) thus reaches with noticeabl3 strength as far down in depth as the

ivalue of the wavelength, while the higher order waves do not reach beyond

Ithe first atomic layer. Also, as before, since the factor 1/vIm appears in

the absolute valr. of the amplitude, the higher inhomogeneous waves are

much weaker than the principal wave (00). Physically speaking, the higher

inbomogeneous terms describe the perturbation at the surface, which is

caused by the discontinuous nature of the surface. The (00) wave, on the

other hand, is produced by the events in the interior and is independent of

the smallness or coarseness of the surface lattice of atoms.

The dynamic conditions remain the same for the total reflection as for

the previously discussed exit of a wave from the medium. The internal in-

omogeneous wave c must be removed by considering the internally re-

flected wave. Inside the medium, the two inhomogeneous waves c and c'

are superimposed. For the reflected wave in the interior we obtain as

above Eq. (R8b) the amplitude

S+ kcos 4 - ik., V7i-
7wS+ I ks+ ik Sio 3-1
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Its absolute value, which is the important quantity, is 1 since numerator

and denominator are complex conjugates.

The potential of the inhomogeneous wave in outer space bas at the

boundary the amplitude [compare Eq. (88c) I

____II* 2 coS

po +72 rW Smnss- I + r coo 8

The absolute value of this is

2 coo 8

For the field of the el-ctric: vector, we have to add the factor k0 1k = LI

for the same reason as prewiously. That the result coincides with the one

obtained from Maxwell's theory, follows frmthe fact that it can be obtained

here as above from the -eresnel formulas by replacing cos So by

.TRIMNSITION TO THE CASE OF X-RAYS 2

The series Eqs. (71), (72) and (73) for the field inside and outside the

crystal are valid in all strictness on the basis of the asupin. The dis-

cus-ion of the p_-;vious paragraphs indicates that for the case of optical

waves (ak «<1) the thre series reduce essentwial to their principal terms,

in which all indices are zero.

h is otherwise when x-rays penetrate the lattice. -* We consider the

field in olter slpace, whose potential is the series Eq. (71) (The same
consideration is associated also with the exit of the : -rays. ) There exists

T This case I have --ready treated on the basis of formula (713) in
Phys. Zeitschr. 14:465, 1913.

**Tbe lattice is ;zaturally thougl± of as being perfectly zagclar. In
particular the attenuating thermal motion is completely ne~iecte _
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now a wbolie series of terms for which

is real, and which therefore describe homogeneous plane waves. Among

these waves those are dominant for which the denominator of Eq. (71)

vanishes. The condition for its !Irst factor to vanish is tlt

where n is a positive or negative integer. Restated, this condition becomes

(!j /a - a';- + (m zib - 13'? + (a ke! - (9 :0o)

Note that here (certainly to a high degree of approxmiatiort

Equation (90) leads directly to the sphere exstncteion (1) for the deter-

minaticm of the direction of the interference maxima: It is, in fact, identical

with the Lane conditions for the occurrence of an interference maximum.

That the amplitade of the waves ap.ers to be infinitely large is due to

the cooperation of the infinite number of dipoles and the neglect of absorpaion.

Observe moreover, that in :e interior of the crystal according to the

potentiai 11I likeiis each off the wave !II, --, zi attains a max=-=.. strengTh

for which En. (90) is satisfied. The field in the ineior c is essen-
tially of the interference-favored --mves. ' s -e of these, and not rf,-:mr

(1 P. 24, --:ad ac- c~ or Enz-j.+Uqp. _1 a-th. Urzss., Article La-,V. 24, No.4

(2) M. -. lae, An d. Mnhs. 41; 9.1, and Enzyklop. d. a Wiss.

-K Article Lame V. 24, No. 46.

IE
I
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disting-ishbld from the others, there exists the (000) wave, which in the
optical case was the only dominant one, namely the refracted wave.

Oneapparently obtains in Eq. (71), an additional mode of infinite

amplitude, namely when the second denominator vanishes:

-0.

It follows, hcwever, from the de-ivation of formula Eq. (71) that

application of Eq. (71) to this case is not permitted, (the pole is in this

ease of second order).

IL is instructive to consider the transito from the case of x-rays to

the casse of optics. To that effect, we let a k gradually decrease - we can

think of the crvyta1 lattice shrinking while we l Id the wavelength constant.

There are thee a diminishing nwnler of index pairs !, m, which leave Y'fi

real. Keeping 1, m cons-.st, Y1 m becomes ever smaller. This means that

the fan of interference rays which is present for the shorter x-rays,

spr-- ds' out. A moment eomes where the rays which are diffzrcted the

most have v'IM = 0. From there an YIm f or these rays would become and

remain imaginary. -As soo'n as the wave directions approach the crySWl

surface the waves become inbomogereous. The spreading of the pencil of

interference rays can, of orse, be tm&rst&-c, by the increasing dispersive

power of the shrinking lattice which spreads the spectra armt. Only the CO

ray (indicated thick in Fig-wie 1-1) does not charge it positio in this

I - !

Fig/r ",.,1

I
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procets. It is this ,-ty that finally re'iains as the only one of the reflected

spectra that survives in the optical domain.

I

rE

*1

I
I

I
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App~ndix A

Postscript 1970
by F. P. Ewald

DEVELOPMENTS ARISING OUT OF PARTS I AND 1ir ON THE FOUNDATI'ONS OF CRYSTAL OPTICS

Before the end of the summer semester 1910 at the University of

Muninh, I asked my revered teacher, Professor Arnold Somamerfeld, for
permission to start on thesis work under his guidance,~ le suggested for

subjects some ten different applications of Max-we~l's equations to boundary

value problems, such as radio wave propagation, or the self-inductance of

coils of various shapes. At the bottom of the list stood the problem: Does

anisotropic arrangernent of resonators prodnce doublc refracticn ? This
was the only problem, that ended with a question mark, and the Professor

explained that he himself saw no clear way of tackling the probiem and that
it would be much more risky, fromr my point of view, of choosing this
problem rather than one of those where he could foretell w;hat the solution

would require In the way of mathematics. He explained that crystallo-

g-aphers had long since developed elaborate theories of crystal structure

but that these remained purely geometrical speculations as long as no

quantitative consequences had been drawn - and that if I could find an answer,
it might help to corroborste or to rebate the ideas on crystal structure.



A2

Of all the subjects he proposed, only this one evokbd any enthusiasm

in me, and so. after thinking it over, 1 returned to him with the decision

that 1 would like to work on It. Professor Sommerfeld gave me the re-

print of a paper by M. Planck on the theory cf dispersion - and with that T

started on a solitary hike up the Rhine valley in Swityerland for the next

weeks of summer vacation.

1was not machi wiser when 1 returned to Sommerfeld in the fs1J. Not

o.-Ay 1ad I not progressed with my problem, but I even foun6 great difficulty

in understanding what Planck waz doing, and Planck had al-ways been praised

to ±ne as a master of clarity. There seemed to me to be some confusioti in

his3 calculation of the field created by the resonators (dipoles) in th, . medium~

and the "incident field' which seemed to exist in addition.

Professor Soriunerfeid, mueanwhile, bad also given some thought to the

problem. Using the Hertz potential, he ba-d tried to Eum tip the fields of

the spherical waves Issuig from the dipolies at the nodal rpoir of the

orthorhombic iat'Ice and had recognized that the main obstals In this

summation was the fact that the dinole coordinatc-s , Y, Z, m~tered in the

Hertz potential only in the irrational expression

R -x), y_{Yy) 2  (Z-z)'

where (x, y, z) denote the field point. He then shoived me a representation

of I R by an integral contairsirg Bessel. functions of r, the two-dtmensionalRe
analoguie to R, and an exponential fretor in which the exponent wras linear

in the third coordi-nate (Z -~ 7,,hi'e summation over the third coordinate

couild then bx- readily performed under the integral sign, for it was nothing

but the sumr of a geometrical series. Could we not, -Soimmerfelad suggested,

bring the other two coordinatea into, a similar linear form? For the next

few mouths. I tried, in vain, to ac-hieve this - then, suddenly, I saw theI: light and obtained the desired representation In the form of the triple in-
tegral fPart I, Section 5, Eq. (23)]. Whenlr arranged to show Sommerfeld

my recent advance, he greeted me with the woris: "I too can show you
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something that should be helpful" - and he developed the very same integral

which he had derived in a less cumbersome way.

The path now lay open for finding the total potential by means of the

residue method and I rapidly arrived at the expression Part I, Section 6,
~Eq. (3-9).

I- My happiness over this first tangible result was not to last long: I

found it impossible to subtract from this total potential that part that was

o onrtributed by the test dipole. Since the oEcillations of the test dipole are

caused only by the radiation coming from the other dipoles, this subtrac-ition appeared essential for the determination of the 'Yield of excitation".
The impossibility of a direct subtraction comes from the fact t!2t in "he

expression Part I, Section 6, Eq. (30), all individpal dipole fields areLU jumbled together and recast fito a stn ef norJocaiized plane vaves in
which individual cont-ribuions can uo forger be recogrdzed. (! was rot

aware, at the triae, that what I had obtained was a Fourier development of

the tota, field.)

Success in the removal of the field of the test di ole came through

nSommerfeld's assistant, P. Debye. At a skling holiday in MIttenwald,

Easter 1911, Sommerfeld showed him our quandary. With one glance at

the expression of the total potential, Debye said: "-is Is quite simple; you

have to use Riemann's method of bringing the d&nominator of the sum term

into the exponent of an exponential f-mction by introducing a new integration.

The integrand then becomes a theta-fjnction and you can apply the trans-

formation theorem of the theta functions to it." The whole *consultation"

probably lasted no more than a qnarter of am hour. Debye was not only an

avid reader of classical physics, but also had an extraordinary power of

seeing through mathematical formalism. He did not know at the time in

which of R-emann's papers this method occurred - nor did I ever find out.
~Wben 1 had finally understood De-bye's advice, I trmnsformed the total

potential in the way he had suggested. This is a rather round-about way of

obtainng the theta functions and in the publication I followed a more direct

way by introducing the simple-integral representation of 1 eiR, [Part 1,
~Section 5, Eq. (18)], which leads directly to theta functions.
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For an orthorhombic lattice, the theta function in X, Y, Z) is the

product of three such functions of one varable each, and the transformation

is easily written down. The integrands in the two forms thus obtained are

equivalent at any point of the integration over r. In fact, one ts the Fourier

development of the other. It is, therefore, permissible to use one integrand

up to an arbitrary point E of the vhole integ-al path, and then change to the

other form for the remainder of the integration. In the integral from E to co

individual contributions to the potential are still recognizable, and the con-

tribution of the test dipole car be omited; whereas in the integration from

0 to E, the Fourier-transformed integrand is used in which individual con-

tributions are blotted out. By suitably cheosing the transition point E, one

arrives at having rapid convergence of the sums in both integrals. A par-

ticular advantage lies in the fact that by sbifting E, rapid convergence can

be shMed from one sum to the other. Since the sum of the two part integrals

is nd pen jen of E, an easy sheck on he correctness of the mnerical work

is afforded by using two differeat values E.

I have later extended this meth.d of cakltatftg lattice potentials and

Madelung constants from orthorhombic to general lattices. * There, the

theta fun-tion of the three space coordinates no lmger splits into the pro-

duct -(x). O(y). O(z). The transformation property of the space-theta was

contained in the main text on theta function, Lat in a horribie form. By

using the concept of the reciprocal lattice, I could re-state it in a way akin

to the tools of the mathematical physicist. Since then, the theta function

method has been the favored one for calculating lattice energies and po-

tentials. The neat way in which the formal splitting cf the integral for the

potential produces two rapidly convergent parts was interpreted physically

in a later paper of m.Ine. *

• Ann. d. Phys. Lpz. (1921) 64;253-287.

•* A. Krazer Lehrbuch der Thetafumktionen, Teubner, Lpz. 1903.

• -' Nachr, C-es. d. Wiss. zu Gttlngen 11938) Math-phys. KM. 3:55-64.
_ _ _
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For bringing my thesis to a conclusion, two po.nts had to be discissed:

J (1) Did the formal expression obtained for the refractive indices of

waves travelling along the x, y, and z directions of the orthorhombic lattice

guarantee that the optical behavior of the medium would conform to the lawsi* of crysWa optics and be valid also for other directions of light propagation?
This is answered in the affirmative sense in Part I, Section 10.

(2) Is the birefringence found, a major or negligible effect? It was not

easy in 1911 to carry out such a comparison because in spite of the existence

ot an elpaborate geometrical theory of crystal structure the question was

left wide open what kind of particle - molecules or groups .f molecviles -

was to be placed in the assigned positions. The birefringence might well

have its origin in an inherent -inisotropy of these particles rather than in

the contribution caused by their anisotropic arrangement. What I needed

Ifor the comparison was a crystal of known birefringence which was built

according to the simple orthorhombic lattice postulated in my calculations.

The famous old professor of miner-alogy and crystallography, Paul Groth,

*to whom I took my question, exclaimed after some bard thinking: ' There is

j one crystal which is most ertainly built according to the lattice you want,

for it has three marked cleavage planes at right angles to one another.

This crystal is Pnhydrite, CaSO4 . Try that." So I did. The result of my

calcudations is to be found in Part 1, Section 11. It was shattering my secret

hopes of obtaining values showing at least some similarity to the actual bire-

fringence of anlrydrite.

So, with some resignation, I stated that the order of magnitude of the

birefringence due to the lattice arrangement is the same as the observed
one. From this it followed that in any future calculation of birefringences
the effect of the anisotropic arrangement would have to be taken into account.

It was only years later, in 1925 and 1926, that the true structure of an-

hydrite was established as consisting, essentially, ni SO4 tetrahedra ar-

ranged according to a b-face centered, not a prbnitive, orthorhombic lat-

tice.

1. = =° =. .= . =
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In my thesis, I made some attempt to discuss what would be irmplie,]

i au: extension of thri thtory to n'ore complicated assamptions rg..rd-ng

the crystal structure. The two sections, one on the influence of infrared
proper vibrations, and the other on the refraction by a general periodic
arrangement of dipoles, did not lead to any physical results except showing

that some of the conclusions reached un-der the simpler assumptions would

be invalidated: they were, therefore, omitted from the paper published

in the Annalen der Physik.

The calculation of double refration became much more realistic once

the determination of crystal structures had become possible after Laue's

and Bragg's work in 1912. In particular, E.A. Hylleraas was very success-

ful in accounting for the birefringence of the tetragonal calomel (Hg2 C1)

and of the trigoial Quartz kiO )** by an extension of the theory to more

general structures than the simple dipole lattice. In the case of qunatz,

Hylleraas could also account for the optical rotatory power, -using an e.-

tension of my theory which ba meanwhile been worked out by M. Born in

order to derive optical activity from the presence of screw axes in the

crystal structures. In all these capes, it was sufficient to assume the atoms

to be represented by isotropic dipoles; later, cases became known where an

inherent anisotropy of the resonators had to be assumed in addition to the

effect of their anisotropie arrangement. ***

The theory of 'ITAspersfin and Double Refraction of Electron Lattices

(Crystals)," was first printed uider this title in Gdttingen 1912 and sub-

mitted as Ph.D. thesis to the Philosophical Faculty (IL Section) of the

University of Munich under the date of 16th February 1912. The present

* Zs. f. Physik 1926, 36:859-896.
"k

• Zs. f. Phys. 1927, 'A:871.

* See, for instance, H. C. Bolton, W. Fawcett, I. D. C. Garney,

Proc. Phys. Soc. (1962) 80:199-208 and (1963) 82:33"-46.
IVA
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translation is from a subsequent publication where, under a new general

title Foundations of Crystal Optics, an introduction is given not only to the

T theory of dispersion, but also to Part, HI which is called Thec'rvy of Beflec -

tion and Refraction. Two more papers appeared under the same gene;'al

title, namely in 1917", and twenty years later.

t,- The latter two parts deal with the case that the wavelength of the

optical field is shorter than the distance between neighboring atoms in the

crystal. The strictly valid transformations of the sum of spherical dipOle

r waves from Part I are again used, but their discussion proceeds along

entirely different lines for the X-ray than for the optical case. The same

conditien of consistency of the dipole oscillations witb the field created by

them is applied and its result is the determination of the mode of propaga-

tion of the ,.ptical field in the interior of an unboumded crystal. The X-

opical field, however, is more complicated than that of visible light, for

it consists not of a single plane wave, but of a pencil of such waves which

are coupled together. The dynamical condition for the propagation ol the

X-optizal field is expressed geometrically by a surface of a similar nature

to the surface of normals in visible optics (Part I, Section 10); for X-rays

this is called the surface of dispersion. Once this surface has been deter-

mined, all possible modes of propagation of self-consistent X-fields in the

interior of the unbounded crystal are known. There remains, however, the

same problem as in the case of visible light, namely of relating the internal

optical field to the external one for a crystal with boundary, i. e., a cryst.al

filling only one half-space. This problem was treated for visible Ught in

*Annalen der Physik (Lpz) (1916) 49:1-38.

** Part H: The Crystal Optics of X-Rays, Ann. d. Phys. Lpz (1917)
* -4:519-597.

***Part IV: Establishment of a General Condition of Dispersion in

Particular for X-Ray Fields, Zeitsch. f. Kristallographie (A) (1937)
97:1-2"p.

! .
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Part Ii of the series, and the same principle, estaLtished there, could

later be applied to answer the X-ray case.

The so-called Dynamical Theory of X-ray Diffracticn of Part HIl was

restricted by the assumption that the crystal could be represented by a

simple (X; imitive7. lattice of dipoles. The restriction to an orthorbowbic

lattice was lifted because one had meanwhile learned to handlk nonortbgonal

lattioes by means of the concept of rec;procai vector sets. * it tne simple
case of only two plane waves forming the X-apticai field, o. could deal
with a general crystal structure, thus getting rid of the fir ;f restriction (on

the rystal) by introducing a new one (on the fld). The i -sulting intensity

formula (" not the entire theory) was mblished in a paper of mine.**

This, hcwever, left the general cae unanswe-ed ta which an X-optim .

fie-d aonqisting of n component plane waves travels t'xough a general peri-

odic crystal structre. This problem was tackled in art IV and brougl

to a general, if formal, solution. The ideal aim of this theory was to

obtain a uniform treatment valid for short X-wavei engths as well as for

the long ones of visible light and beyond this for the static dielectric

constant, and all that in a quite general periodic medium. The formal

answer obtained in this paper deals cly with the internal condition of

self-consistency which, however, is the clue to the boundary problem. An

application of this general theory to the propagatio- of an X-field consisting

of three plane waves in a diamond-type structure is to b found in the paper

by Ewald and H~no.***

The dynamical theory of X-ray diffraction was recast in a different

form in 1931 by M. von Laue. The crystil was considered to be a con-

tinuous periodic medium in which a periodic dielectric constant affects the

propagation of the X-rays. Laue's theory thus departs from the strict

* Introduced by Willard Gibbs in his lectures 1881-1884, but first

published in Gibbs-Wilson Vector Analysis, 1901.

* Physik. Zeitsch (1925) 26:29-32, and 1926, 27:182.

•** Acta Crystallographica 1968, 24:5-15.
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concepts of the Lorentz electronic theory of matter and makes use of the

Maxwellian material constants and field quantities and their relations. A

justification for this step was given by It. Kohler in 1935 on the basis of

wave mechanics and perturbation theory. The chief difference between-

Laue's and my own version of the theory is that Laue makes use of Mlx-

wellian type boundary conditions at the surface of a half-cLTstal in order
to connect the external and the internal field, whereas in my theory this is

achieved by the condition of self-consistency which has to be satisfied at each

dipole throughout the depth of the crystal. The results are the same in both

versions.

The dynamical theory of X-ray diffraction has achieved increasing importance

where crystals are used as optical instruments of considerable perfection.

Of greater practical importance, however, is the application of the concepts

created in this theory to the case of electron diffracticc. The scattering

effect of matter is much stronger for electrons than for X-rays, and

therefore the multiple scattering effects are more prominent with -1 _-Uns.

Since these are included in the "dynamical" theory, this theory has to be

applied to electron diffraction at an earlier stage of refinement than is

necessary in X-ray diffraction. The theory of electron diffraction was

first given by EL A. Bethe in 1928, and it uses many of the concszts in-

troduced for X-rays. It is a scalar theory of diffraction dealing with

SchAtinger's psi function as the field quantity rather then with the vectorial

field strengths of the optical theory. The theory is an unfailing guide in the

discussion of the highly complex observations of electron diffraction.

With the advent of neutron diffraction, the concepts and methods of the

dynamical theory found an important new field of appication. *

After this slort survey of the wide field of developments beginnix g with

the two parts of the series which are to be found here in translation, let us

retuLrn to Part 11 with some comments. It contains the comnection bel ween

the Internal and the external field In a 'Iblf-crystal," i.e., a lattice Mlling

* See for instance C. G. Shull (1968) Phys. Rev. Letters, 21:158 i-
1589.
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one alf spn e and cia oj at the surfae t -= 0. The half-crystal is still

infinite, but it is boded. Strictly speaking, it has no boundary i, the

sense of the Maxweflian theorv for a continuous medhan, and therefore

the bIeory does nm contain boundar-, conditions which would be v.lid over

the entire plane z = 0. instead, the _aFf--c-yst:a is an open structure with

empty space not only outside the lattice, but Olso inside bet~ween the dipoles.

Te_ peculiar bcamdary conditions for a continuous medium, hlke E tang ard

D the same on both sides of the boundary, are replaced in the open

structure by the condition of self-consiszency &t the site of each dipole, no

matter at what depth under the surface it lies.

It was already pointed out in Part I, that in the theory af dispersion

there %as no room for an incident wave - in fact where should ii come "from

If the crystal fills all space? In Part H, it is shown tbat by restricting the

summation of spherical dipole wavelets to source. on one side of the plane

z = 0, extra fields are created which travel on both sides away from this

plane with the velocity c, or in the higher terms of the series, are in-

homogeneous surface waves; i.e., waves whose (small) phase velocity is

directed along the surface while their amplitude decreases exponentially

with increasing distance from the surface. The term 'boundary waves!' is

used for these waves in order to encompass both the homogeneous and in-

homogeneous ones. In other places * I have called them epiwaves, in

cotrast to the field in the unbounded crystal which consists of mesowaves.

In Part I, the boundary waves arise from residue formation at special

series of poles in the plane of integration. A less formal understanding of

their oecarrence is desirable and can be obtained in two different ways.

The first is a simple application of the sun of a geometrical series,

say of quotient Q. The infinite series, 1 + Q + Q2 + ... has the sum

1/(1-Q) ; the finite series, 1 + Q + Q2 +... -Q(p-1) has the sum (1-QP)/

(1- Q, that is, an additional term is caused by the termination of the series.

* For instanec '1U Gomer and Smith, Structure and Properties of Solid
Surfaces, univ. of Chicago Press 1953, Ch. IL
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Kow ve consider the s-hcrical waves issuing from a plane of equal dipole

phase. These waves will, soon after ,eaving that plane, merge to form a

plane wave travelling with the velVzi y c away from the plane of the dikoleso

At a field point z there arrive such plane waves emitted from the nearest,

the ne earst an successively more distant planes of dipoles. Since the

assumed velocity of the dipie phase L¢ a. there -il be a. z a time lag 6

between contribuions from neighboring dipole planes equal to a(1/q - 1/c)

where a is the distance between the dipole planes. We thus obtain at z a

sum of waves of equal amplitudes but with a phase factor Q = e between

them where v is the frequency and j = 27 -i. The resulting amplitude at

z is the sum of the geometrical series

n n

If the series is continued to infinite values of n (assuming a slight absorption

for the sake of coavergence), the resulting amplitude is 1/(1 - Q). If we

have to terminate the summation at the (N - 1) st layer above z, an additional
N

term Q 1(I -Q) arises. This term correspnds to the boundary wave. A

full discussion of the theory along these simplified lines is the subject of a

paper of mine.*

The second, even more physical way of understanding the field in the

interior of the balf-crystal is this. Imagine first ali space filled with the

dipole lattice oscillating as assumed in Part I. The result is the field

derivable from the potential Part I, Section 6, Eq. (30) which we now call

for short the mesofield. Next cancel the contributions of the dipoles above

the plane z = 0 by adding in the upper half of space fictitious dipoles of the

opposite phase. Then tbe total field in the lower half-spac is the sum of

the mesofield and the field produced in the lower half-space by the fictitious

* Fortschritte der Cher-ie, Physik und physikal, Chemie Serie B (1925)
18, Heft 8 (Berlin, Gebr. Borntriger Verlag). See also Physica (1924)
4:234-251.
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dipoles, I. e., outside the fictitious medium. This is, of course, a field
corsisting of waves of velocity c; in fact, it is the field of the irternal

boundary waves of the half crystal. TI- fictitious dipoles, apart from
destroying the inesofield in the upper half of space, also create there ar.

internal boundary wve in their (fictitious) medium. For the real half-

crv'stal this is its external boundary wave which then becomes the reflected

wave when the relationship to the wave incident on the half-crystal is

established.
This physical explanation is not too different from the foregoing ex-

planation b~y means of the termination term of the finite geometrical serxies.
For the formula for the finite sum can he interpreted as the instruction:

sum first the infinite series and then subtrat all terms beyond the point of
termination (p - 1); i. e. , the same Infinite series b-.: with all terms mlt. -

plied by a factor QP.

My entire series of papers deals with the ontical pi-cjlems stricrly in

the sense of A. H. Lorentz' Theory of Electrons, but ditffercr from his
treatment by the fact that no averaging over random positions of dipoles

becomes necessary. This is the v~rtue of Sornmerield's clear formulation
of the r'roblem. Shortly after mny work, and independent of it, Professor

C. W. Oseen in Oslo found the samae scr-ening action of a bo'indarv that is

so essential in my treatment. TE-s work is based on Maxwell's equations
for a homogeneous medium. He assumes a4light wvve to faill on a finite

body bounded by a surface S. on which the usual bo-mfdtry couditions hold.

By transforming the integral expressing the polarization crfe-ated ini tlhe tody,

he showc that this coi~sists of the two parts, on of which conformfs to the
wave equation A u + u u= 0 with x = K o=uk, and the other with X= k 0
where k0 = wave constant in free space, n = refractive index and K0 = wave
zonstant in the medium. The same holds fo.- the total field, which is the

field created by,. the volume polarization fa t.he b)ody plus the field incident
fromn outside. The condition of self-consistency in the bod y can ;ie ful-
filed only if those parts of the field vanish that pr-)grace with' welo-city c,
That is, the external field into which the body is ;Jlaced, must caincel that
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part of the field which originates in the volume polarization and progresse s

with velocity c. i ii latter part can be expressed as a surface integral of

the oolarlzation over the boundary surface S.Thsiisbteaconf

the surface that the body Is shielded from the impinging optical field.

This is in gp.nei'al terms the same result that I obtained for the special

case of a plane boundary. The Oseen theory is well rendered elsewhere. *

Lookilng brack on the math-1matical technique used in Parts I and IT, it

may well be considered cumbersome. When the papers vier4. written, the

technique of Fourier transformation -was still in its infancy. Re -ciprocal

sets of axes had yet to be discovered by physilits. Their importance for

the Fourier development of functions in a n-on-orthogonai cell was shown in

my paper on the reciprocal Itattice, but even then the idea of considering

the Fourier coefficilents rs the transform of a periodic function had either

not heen pronounced or not gained the antion of the, physicists. Now

adays, the transformiation of the sum of spherical dipole waves into a sum

of plane waves is achieved easily by applying a few general properties of

Fourier transformnation. This method can be found in my paper,

recording a lecture given in 193R2.

My papers contain, for the first time I believe, a clear separation of

tie Internal problem of finding the kind of optical fteld that can exist ins' Je
a dispersivi; medium, from the external problem of finding our whlat happens

if an external wa~ve fals or, the s-urface of such a Mediu-m. It is only lately

that I have Lecome aware that the splitting of the entire problem into tbese
two parts corres.Donds q-l'wt dl.osely to the dl-ision Into two stens of the
maechanical probibm of oscillations generated by an impact on a mechanica'l

system. There, a preliminary study is made of the free o.ociflations of the
system- and the knwledge so gained is subsequently applied otebhvo

*Barn and Wolf, Principles of Opti.'cs, 2nd ed. (1964) pp. 100-104,
7 Pergamon Press. The origin3=i paper by Oseen is Ann. di. Phys. (Lpz.,

(1915) 48.pp. 1-56.
**Zeitsch. f. Kristallog (1921) 56:129-IB64

*Anae de l'institut Henri Poincare, 8:T9-110.
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of the system after an impact has set it in motion. The free oscillations

are those requiring no outside forces and they can exist culy at certain

frequencies. The theory of dispersion (Part P, omits all external forces;

to the determination of the proper frequency (or frequencies) of the

mechanical system there corresponds the determination of the wave vector

K (or, in the case of X-rays of the several wave vectors K for which

alone the systemn of field and dipoles is self-consistent. This knowledge is

used to construct the state of the system filling a half-space when an

impact is given to it by an external wave impinging on its surface, The
davelopment of the mechanical system in time is paralleled by the spatial
development in the optical system. This analogy will be found worked out,

for the caFe of X-rays, in a recent paper 'f mine.*

It is deplcrab!a that most physicists interested in optics, as a sub-

division of Physics, ignore or nearly ignore the fascinating branch of

X-ray optics. In my papers, visgie and X-ray optics are joined together

in a comprehensive theory which, because of the mathematical strictness

of its fouindatlon, holds for the whole range of wavelengtbs, from the static

case (k infinite), through the visible ()L - 5000 A; to X-rays (k-A).

The diseiasion, it is true, varies In these different regions, but. the

principles on which the theory .s based remain the ae. This wide range

has attracta ine to the theory through about 60 years in the ceolrse of

hiIh the X-ray optics gra.ualy developed from a purely logical necessity

to a reliable guide through a wealth of cxperimentaI observations which

becanie feasible with the advent of the art of growing nearly -faultless

crystals.

Acta Cryst. (1969) A25:103-108.



j B I

Appendix 9

Biograpny o P.P. Eaid

P'aU P. E-wald was born 23 January 188t in Berlin, Cermany. His
faiher, a promising young historian, died of appendicitis at the age of 37
shortly before he was born. His mot--r, being free to travel, took idm ot.
extended trips tc England and to PAris. Thus by the age of five he had a
rudimentary kowledge of both English and Frenrh.

He gra duated from the Victoria Gyn-)~si.,t of Potsd2ai obt-Aining his
Arbibur (school-leaving examination) in the fall of 1405. The rxn vu;r
terms V905/06 were spent at Gonville and Calus Ceg , part of the

Urversity o; Cambridge, Englard; )906/07 at th Z:1iversity cf (4"3tingen.
From 1907 to 1912, he studied inder Professor Arnold 3ommerii=Id at the.
University of Munich and received his Ph. D. in Physcs in February 1912.
IHis choice of a thesis subject Influenced his entire scientifc career,
'Tispersion and Double Rellaction of Electron Lattices (Cry.tLF'-)" dealt
with the propagation of light in crystals and wras explored by him further in
vari ous ways in later papers.

The years of World War I were. spent as an X-ray te: hniciau of the
German army on the I ussian front.

Returning to .miversity life at the University of Munich in J918, he
became Privatdozent (lecturer) there. but soon moved to the Technische
Hochschule, Stuttgart, in 1921 as Professor of Theoretical Physics, a

t

J:
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position he held until 1937. During this time he wrote a book: Kristalle

und Rblntgenstrahlen (Crystals and X-rays), (Springer 1923), and together

with C. Herman, Strukturbericht 1913-1928 (Structure Report 1913-1928),

(Akad, Verlagsges. 1931).

His first visit to the United States occurred in 1936 when he was

invited to give a course of lectures on X-ray diffraction at the Summer

School in Physics in Ann Arbor. Leaving Germany in 1937, he returned

to Cambridge University, England, where from 1937 to 1939 he was a

Research Fellow in the Crystallographic Laboratory. Then he moved to

The Quesn's University, Belfast, first as Lecturer, then as Professor of

Mathematical Physics.

After ten years In Belfast, he moved to the United States and in 1949

became Professor of Physics and Head of the Physics Department at

Polytechnic Institute of Brooklyn, Brooklyn, New York. Tn 1957 he re-

linquished the position as head of the physics department but remained as

Profescor of Physics until he retired in 1959.

Over his long and produxXive career he has written numerous papers

of which he considers some to be fundamental. He is known for his nart in

the EwaId-Oseen extinction theorem, and Ewald's reciprocal lattice is a

subject of study for students of optics and crystals. It is F-n important

tool for all work on X-ray diffraction in crystals. Ewai's principal

achievement Is the 'TDynawica! Theory of X-ray Diffraction!' which he dealt

with in a number of papers using the same principles he 3ad employed in
his doctoral thesis and his two-pait paper published iD 1916 of which his
thesis a-s Part L These papers elucidate the principles which govern the

transmission of electromagnetic radiation through a crystallie medium.

The wavelength range which i3 considered includes both visible light and

X-rays. Because of his work he has been the recipient of r number of

honors. He was awarded an honorary doctorate from the Technsche

Hcehschule, S ttgart in 1954; "University of kaxis in 1958; Adelpmi Univer-

sity, New York in 1966; and the Univsrsity of Munich in 1967. He was

made a Fellow of the Institute of Physics and Physical Society (Englandi
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in 1945; the American Physical Society, 1942; the American Academy of

Arts and Sciences, 1955; The Royal Society, 1958; Akademic Deutscher

Naturforscher (Leopoldina) 1966.
He is correspl-ndi.3 member of the Akademie de r Wissenschaffen zu

Gbttingen (1937) and of the Bayerische Akadeinie der Wissene2haffen in

Mbfinchen, (19627). He was made an honorary memoer of Societ6 frangaise

de mineralogie et cristallographie in 1955; Deutsche Mineralogische

G-,sellschaft 1958; Cambridge Philosophical Society, 1969.

Over the years, in addition to his numerous papers, he found time to

be a co-editor of Zeitschr. L K-rstallographie from 1922 to 1937; and to

S be editor of Acta Crystallographica from its e.rlRest beginnings in 1948 to

1959. In addition to the books previously mentioned, he c'nutrilhted sec-

tioTs to: Landlt-Btrnstein Tabellen (two editions); M-GUer-Pouillet Lehr-

buch d. Physik (11th Edition 1926) (An English translation is in 'The Physics

of Solids and Fluids" (1st Ed. 1930, 2nd Ed. 1936) (Blackie)); Handbu-h d.

Physik (Springer 1927 and 1933); High Speed Aerodynamics Vol. 1 (Editor,

F. D. Rossini, Princeton University Press 1955). He was the principal

author as well as editor of the book 'Tifty Years of X-ray Diffraction"

published by the hternational Union of Crystallography in July 1962 to

celebrate the Laue and Bragg discoveries.

He was Member of the executive Conrmmittee of the international Union

of Crystallography from 1948 to 1966, and President of the same org-.-uza-

tion from 1960 to 1963.

The January 1968 issue of Acta Crysta m-graphia was dedicated to hin-

on the occasion of his 8fth birthday, The issue ccntains one of his scientific

articles and a three page article with the title "Personal Reminiscences".

which contains many interesting biographic remembrances.

His retirement from university lIe in 1959 was nct a retirement from

other activities. True, he moved to quieter surr-omI.gs in New YMilf-ord,

Connecticut, but as indicated by dates already given he ]-s remained active.

For a ntmber of years he maintained a rather busy schedule of lectures in

addition to his activities for the International Union of Crystallography.
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Presently, (May 1970), he continues an active interest in science and car-

ries on a scientific correspondence of some magnitude and occasionally

travels to a meeting even if it is far away from Connecticut.

-j3
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